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Abstract: Machine Learning (ML) methods have become important for enhancing the performance
of decision-support predictive models. However, class imbalance is one of the main challenges
for developing ML models, because it may bias the learning process and the model generalization
ability. In this paper, we consider oversampling methods for generating synthetic categorical clinical
data aiming to improve the predictive performance in ML models, and the identification of risk
factors for cardiovascular diseases (CVDs). We performed a comparative study of several categorical
synthetic data generation methods, including Synthetic Minority Oversampling Technique Nominal
(SMOTEN), Tabular Variational Autoencoder (TVAE) and Conditional Tabular Generative Adversarial
Networks (CTGANs). Then, we assessed the impact of combining oversampling strategies and linear
and nonlinear supervised ML methods. Lastly, we conducted a post-hoc model interpretability
based on the importance of the risk factors. Experimental results show the potential of GAN-based
models for generating high-quality categorical synthetic data, yielding probability mass functions
that are very close to those provided by real data, maintaining relevant insights, and contributing
to increasing the predictive performance. The GAN-based model and a linear classifier outperform
other oversampling techniques, improving the area under the curve by 2%. These results demonstrate
the capability of synthetic data to help with both determining risk factors and building models for
CVD prediction.

Keywords: synthetic categorical data generation; generative adversarial networks; imbalance learn-
ing; CTGAN; interpretable machine learning; cardiovascular disease

1. Introduction

With the ongoing development in information and communication technologies, un-
precedented amounts of data have been generated in multiple fields of healthcare [1].
Data-driven models offer great research opportunities, allowing us to extract clinical knowl-
edge and support decision-making. Along with data proliferation, the use of Artificial
Intelligence (AI) has been intensified in recent years fostered by advances in computer pro-
cessing, software platforms, and automatic differentiation [2]. Within AI, Machine Learning
(ML) methods have attracted significant attention in both academia and industry, being
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used in multiple domains ranging from computer vision to natural language processing [3]
and for different tasks such as classification, regression, and clustering, among others.

Despite the potential of ML methods, most of them are generally hampered by the
class imbalance problem. It occurs when the proportion of samples of one class greatly
outnumbers the others in the learning process [4,5]. Most ML algorithms are built to work
properly in scenarios where the number of samples per class is fairly equal, since learning
with imbalanced datasets biases the classifier towards the majority class. To deal with
this, several methods have been proposed in the literature [4–7], which can be classified
into two types, algorithmic-level and data-level approaches. The former adapts the loss
function of the algorithm by assigning a higher weight to the misclassification of samples
associated with the minority classes during the training process [8]. Examples of these
approaches include cost-sensitive learning and ensemble methods [8]. In contrast, data-
level approaches balance the class distribution by undersampling the majority class, by
oversampling the minority classes, or by considering a hybrid approach that combines
undersampling and oversampling approaches [9].

In this paper, we primarily focus on oversampling techniques. Among them, Synthetic
Minority Oversampling Technique (SMOTE) [10] is one of the most used. SMOTE relies on
the nearest neighbors technique, aiming to generate new samples that are mid-way between
the nearest neighbors in any particular class. SMOTE has been used to generate numerical
data and improve the generalization of predictive models in tasks such as regression and
classification [11–13]. However, many real-world applications present high-dimensional
and heterogeneous data (mixed-type) with numerical and categorical features. SMOTEN
and its variants have been used in several clinical works for improving the predictive
performance in identification or prevention of diseases, such as cervical cancer prevention
using risk factor inputs [14], sepsis early prediction using both structured and unstructured
data [15], COVID-19 identification using chest X-ray images [16], and smartphone-based
cough recordings [17] or the cardiovascular monitoring of COVID-19 patients by using
wearable medical devices [18].

Recently, generative models based on Artificial Neural Networks (ANNs) have revolu-
tionized the outcomes in multiple knowledge areas due to their outstanding performance
for creating synthetic data, particularly in computer vision and image applications [19,20].
Despite these outcomes, a few strategies have been studied for generating tabular (struc-
tured) data. For instance, a variant of the Variational Autoencoder (VAE) called Tabular
VAE (TVAE) has been proposed, which uses two ANNs and trains using evidence lower-
bound loss with the goal of creating mixed-type data [21]. Additionally, the techniques
based on Generative Adversarial Networks (GANs) have emerged as a potential tool for
creating synthetic data, frequently enhancing the model’s performance in classification
tasks, while also addressing data privacy issues. Although the application of GANs has
been validated in different domains [19], they have not been well studied when considering
electronic health records (EHRs) with structured and categorical and continuous data [22].
Because tabular data typically contain a mix of categorical and continuous features, gener-
ating realistic synthetic data is not an easy task. In this sense, Conditional Tabular GANs
(CTGANs) have been created for modeling tabular data distributions and sampling entries
from them [21] by employing a conditional generative antagonistic network. Furthermore,
in several real-world datasets, CTGAN has outperformed Bayesian approaches [21].

In healthcare applications, class imbalance is a recurrent challenge to building predic-
tive models with a reasonable generalization capacity, because a highly skewed distribution
of training data will be prone to forcing the learning algorithm to be biased towards the
majority class. In particular, we focused our research on cardiovascular diseases (CVDs)
since they are the most significant cause of death worldwide [23]. Specifically, we analyzed
data collected with a smartphone-based method from a population group in Norway [24].
The dataset comprised a series of survey questions related to socioeconomic factors, al-
cohol, and drug use, physical activity (PA), dietary intake, and one question indicating
current/previous non-communicable diseases. Working with categorical features in ML
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is challenging due to most algorithms working adequately with numerical data, one-hot
encoding being one of the most popular approaches to transforming categories into num-
bers [25]. However, this approach generally returns a sparse matrix, increasing the number
of features (dimensions) that the model handles, and the risk of the curse of dimensionality
problem [26]. Furthermore, when the feature includes an excessive number of categories,
the majority of which are irrelevant to the prediction, this is amplified. To cope with these
issues, a target encoding strategy is used [25], which aims to encode the categories by
replacing them with a measurement of the impact that they may have on the target.

This research aimed to perform a comparative study of synthetic categorical data
generation methods, with a special focus on GAN-based models. To this end, we have
generated new samples with oversampling methods that seek to maintain the same fea-
ture categories as the original data, a similar probability distribution of attributes and the
dependence between them, thus addressing the problem of data imbalance. All of this
enables the enhancement of the effectiveness and accuracy of the developed classifiers.
However, some ML methods use nonlinear transformations, leading to a lack of inter-
pretability and creating black-box models [27]. Interpretation is defined as the process of
generating human-understandable explanations of outcomes provided by computational
models [27,28]. Several approaches have been proposed for gaining interpretability for
improving model understandability and reliability, highlighting model-specific and model-
agnostic methods [29]. The former is based on feature weighting, which seeks to identify
the contributions of the features that determine the predictions of ML models. Although
feature weighting is easy to apply to simple linear models, these models tend to have
limited predictive performance and, therefore, also have limited interpretive relevance.
The second approach outlined above, the model-agnostic approach, appears to address this
limitation, which aims to extract post-hoc explanations by treating the original model as a
black box.

Concerning the model interpretability, among the most popular interpretable models,
the generalized linear and tree-based models are of great value to interpreting model pre-
dictions [30,31]. In this work, two linear models were considered: Least Absolute Shrinkage
and Selection Operator (LASSO) [32] and Linear Support Vector Machine (SVM) [33]. The
goal was to extract the most relevant features by analyzing the weights of the coefficients
of each of the features to give information about their significance for predicting the output
class. As a nonlinear model, a Decision Tree (DT) was considered since it provides the
importance of each feature [34]. Additionally, the inherent characteristics of various ML
models, due to nonlinear transformations in the learning process, make them powerful
in terms of predictive performance, but they lack interpretability. In the case of the non-
linear ML classifier, such as K-Nearest Neighbors (KNN) [35], we focused on post-hoc
interpretability called Shapley Additive Explanations (SHAP) [36], which is founded on
game theory and local explanations. Since SHAP provides the contribution of each feature
in the model’s output, it can be considered a tool for model interpretability.

We next summarize our main contributions: (i) a comparison of different resampling
and neural network generative models, highlighting oversampling techniques, for generat-
ing categorical data and their influence in the binary classification performance; and (ii)
a methodology to interpret the more representative risk factors/features for identifying
CVD subjects by using a dataset composed by sociodemographic, lifestyle and clinical
categorical variables.

The remaining article is organized as follows. Section 2 describes the dataset and the
pre-processing method. Additionally, we present the foundations of categorical encoding
techniques, and the resampling techniques for addressing the imbalance learning problem.
Section 3 presents the experimental setup, classification performance, and model inter-
pretability outcomes of the linear and nonlinear models that were considered. Finally, the
discussion and conclusions are presented in Sections 4 and 5, respectively.
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2. Materials and Methods

First, this section presents the dataset description and the pre-processing method.
Then, the workflow followed in the paper is introduced, where we present the foundations
of categorical encoding techniques and resampling techniques, highlighting GAN-based
models. Finally, we introduce several quality metrics for evaluating the synthetic data
generated by oversampling methods.

2.1. Dataset Description and Pre-Processing

Data acquisition was carried out as part of a three-year project conducted by the
Norwegian Centre for E-health Research, UiT The Arctic University of Norway, and Health-
com [24]. This study was approved by the Data Protection Section of the University
Hospital of North Norway, and all participants signed the corresponding informed consent.
The dataset was obtained through a survey questionnaire made to a population from
Norway using a smartphone-based solution over a 2-year period [24]. The responses to
the survey were anonymized after their submission. The aim was to track modifiable risk
factors for four non-communicable diseases: CVD, diabetes, cancer, and chronic respira-
tory illness. However, during the data acquisition campaign, only individuals affected
by CVD (n = 465), cancer (n = 72), and both CVD and cancer (n = 46) diseases were
collected. Additionally, 1578 healthy individuals filled out the questionnaire. Due to the
low number of individuals with cancer and both diseases, in this work, we only focused
on CVD and healthy subjects. In summary, a total of 2043 individuals were included in
the subsequent analysis. The dataset consists of 26 features and was organized into five
different groups: background, substance use, PA, dietary intake, and income. Questions related
to alcohol followed a disorders identification test [37], and information about PA was based
on the International Physical Activity Questionnaire [38]. A summary of the categories
associated with each feature is presented in Table 1.

Since all features in our study were categorical, for an exploratory analysis, we fol-
lowed a one-hot encoding strategy to encode each category in a specific variable by assign-
ing the value of ‘0’/‘1’. To better characterize and visually analyze the prevalence of certain
categories compared to others, we built a representation named profile [39], showing the
most prevalent risk factors for a specific disease. The profile is a one-dimensional visual
representation, where the x-axis shows all the categories and the y-axis represents the
frequency ratio of occurrence of each of the categories for a specific group of individuals.
Figure 1 shows the profiles for both healthy and CVD subjects related to the five main
groups of variables previously presented. Prior to building profiles and aiming to deal with
missing data, we performed the following steps. First, we identified the number of missing
values (represented by ‘NAN’ identifier) for each feature, which indicates that the answer
is not available. Since the proportion of ‘NAN’ was low compared to the proportions of
the rest categories, we adopted a simple imputation approach by replacing ‘NAN’ with
a new category named ’NA’ (not available answer for a question). As shown in Figure 1,
the values of ‘NA’ in each feature are lower compared to other categories, which could
suggest that the imputation approach used to compensate for missing values will have a
slight impact on the data distribution of features.

In Figure 1a, focusing on the features with the highest frequency of appearance (age),
we observe that the population aged in the range between 60 and 69 years predominates
for CVD subjects. By analyzing sex, we observe that there is a higher percentage of male
subjects with CVD, while in the healthy group the frequency of occurrence is higher in
women. Regarding BMI, there is a higher frequency of healthy people with a healthy
weight (HW) with respect to the CVD group. Finally, note that presence of high cholesterol
is clearly linked to the group of CVD subjects. In Figure 1b, related to the consumption of
harmful substances, we observe that a high percentage of individuals are non-smokers, this
percentage being higher among the healthy subjects. In general, individuals of both groups
report alcohol consumption, though it is usually one or two units per week. Figure 1c shows
how PA is performed. It has been found that both healthy and CVD subjects engage in
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severe and moderate PA on average one to two times per week, walk seven days per week,
and spend three to five hours per day sitting down. The features related to dietary intake
(see Figure 1d) show that there is a high number of CVD subjects who never ingest salt
compared to the healthy group (who take it occasionally). The percentage of individuals
who do not drink sugary drinks is similar in both groups, this being the majority case. As
for fruit consumption, there is a higher frequency of one or two pieces per day in both
groups. In Figure 1e, we can observe that the greatest wages are earned by healthy people,
and two elderly people are the most common residents of the home, according to our
observations. In the case of CVD subjects, there is a higher number of people with no
minors living in the same house.

HC EducationBmiSexAge

Snuff ≥ 6 units
frequency

Alcohol
units

Alcohol Alcohol
drink

frequency

E-cigaretteSmoking

Strenous
exercise

SittingModerate
exercise

Walking

Sugary
drinks

VegetablesFruits Other
meat

Red
meat

FishExtra
salt

Household
youngs

House
income

Household
adults

               CVD subjects                      Healthy  subjects

Figure 1. Profiles for healthy and CVD individuals considering: (a) background; (b) substance use;
(c) PA; (d) dietary intake; and (e) income features.
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Table 1. Summary of the features and categories in the dataset.

Feature Description Categories

Ba
ck

gr
ou

nd

Age Indiviual’s age 16–29, 30–39, 40–49, 50–59, 60–69, NA
Sex Indiviual’s sex Woman (W), Man (M), NA
BMI a Body mass index HW, OBC-I, OBC-II,

OBC-III, OW, UW, NA
Education b Education level achieved U < 4Y, U ≥ 4Y, PS10Y, HS ≥ 3Y, NA
HC Have cholesterol Yes, No

Su
bs

ta
nc

e
us

e

Smoking c Cigarette use CD, FO, FD, CO, N, NA
Snuff c Snuff use CD, FO, FD, CO, N, NA
E-cigarette c E-cigarette use CD, FO, FD, CO, N, NA
Alcohol Alcohol consumption Yes, No
Alcohol freq. Alcohol drink frequency 2–3 p/w, 4 p/w, ≤1 p/m, 2–4 p/m, NA
Alcohol units # units consumed 1–2, 3–4, 5–6, 7–9, ≥10, NA
≥6 units ≥6 units of consumed alcohol D, W, <M, M, N, NA

PA

Strenuous PA # days of strenuous PA 0, 1–2, 3–4, 5–6, 7, NA
Moderate PA # days of moderate PA 0, 1–2, 3–4, 5–6, 7, NA
Walking # days of walking ≥10 min 0, 1–2, 3–4, 5–6, 7, NA
Daily sitting # hours sitting on a weekday 0–2, 3–5, 6–8, 9–11, 12–14, ≥15, NA

D
ie

ta
ry

in
ta

ke

Extra salt d Freq. extra salt added to food N, OCC, O, A, NA
Sugary drinks f # sweetened drinks 0, 1, 2, 3, 4, 5, 6, ≥7, NA
Fruits/Berries f Fruit servings and berries 0, 1, 2, 3, 4, ≥5, NA
Vegetables f Lettuce and vegetable servings 0, 1, 2, 3, 4, ≥5, NA
Red meat e # consumed red meat 0, 1, 2, 3, 4, ≥5, NA
Other meat e # consumed processed meat 0, 1, 2, 3, 4, ≥5, NA
Fish e # consumed fish products 0, 1, 2, 3, 4, ≥5, NA

In
co

m
e House income Gross household income ≤150 K, 150–350 K, 351–550 K,

551–750 K, 751–1000 K, ≥1000 K, NA
Household adult # household members ≥ 18 years 0, 1, 2, 3, ≥4, NA
Household young # household members ≤ 18 years 0, 1, 2, 3, ≥4, NA

Description of categories. a For BMI: Underweight (UW), Healthy Weight (HW), Overweight (OW), and Obesity
Class I (OBC-I), II (OBC-II), and III (OBC-III) b For education, Primary School up to 10 Years (PS10Y), High School
(HS) minimum of 3 Years (HS ≥ 3Y), less than 4 years (U < 4Y) and 4 years or more of University (U) (U ≥ 4Y).
c For substance use: Currently Daily (CD), former occasional (FO), Former Daily (FD), Current Occasional (CO),
and Never (N). c For consumption of ≥ six units of alcohol: Daily (D), less than once a month (<M), Monthly (M),
Weekly (W), and Never (N). d For extra salt: Always (A), Often (O), Occasionally (OCC), and Never (N). e For red
meat, other meat, and fish, they were measured per week (p/w). f For fruit servings and berries, vegetables, and
sugary drinks were measured per day (p/d). NA stands for Not Available.

2.2. Workflow for Predicting Cardiovascular Diseases

The proposed pipeline for predicting CVD and identifying associated risk factors
using ML methods is based on three stages (see Figure 2). First, the target encoding was
carried out to transform categorical features into numerical values. Next, we present and
evaluate two different approaches: (1) considering all features, and (2) considering a
Feature Selection (FS) strategy based on a bootstrap resampling test to identify the most
relevant features. Finally, using the training subset, we implemented different strategies of
undersampling and oversampling methods for data balancing. Then, we trained several
classifiers with the balanced datasets to predict whether an individual is affected by CVD
or not. Finally, using only real data from the test subset that was not used for training,
the performance was evaluated, analyzing the most important features using post-hoc
interpretability models.



Appl. Sci. 2023, 13, 4119 7 of 23

2043 subjects
d = 26

1578 465

Figure 2. Proposed workflow using oversampling techniques (SMOTEN, TVAE, CTGAN) and
different classifiers designed using ML approaches.

2.2.1. Encoding Categorical Data

Databases with categorical features are common in real-world applications and pro-
vide relevant information for predictive tasks. A categorical feature is composed of a
discrete set of values called categories. In ML, working with categorical features is challeng-
ing because most algorithms work adequately with numerical data [25]. To make proper
use of the information on these features, a pre-processing stage named encoding is needed,
which consists in transforming all the categories of the feature into numerical values. In the
literature, several techniques have been proposed to encode categorical data considering
target-agnostic or target-based methods [25]. One of the most popular target-agnostic
methods is one-hot encoding, in which for each individual arrays of ‘0’/‘1’ are created
based on the presence/absence of a category in the corresponding feature [40]. Despite
its extensive use, prior works that have analyzed categorical encoding techniques have
pointed out two main shortcomings of the use of one-hot encoding techniques [40–44].
First, the dimension of the input space directly increases with the number of categories in
the encoded features, thus substantially augmenting the dimensionality [25]. Second, the
new features created are characterized to be sparse.

To overcome the limitations raised by one-hot encoding, a target-based method called
target encoding has been proposed by [25]. In this technique, framed within Bayesian
encoding techniques, each value of the categorical feature is mapped to a target mean
conditional (target’s posterior probability) on the value of the variable [25]. Broadly speak-
ing, the target variable’s mean for each category is computed and the original category is
replaced by this value. The target encoding is obtained as follows:

µ =
N × x + m× w

N + m
,

µ being the computed mean that will replace categorical data, N the number of samples,
x the estimated mean for each category of a feature taking into account the target, w the
smoothing parameter and m the overall mean of the target.

This encoding technique is not affected by the increase of dimensionality, is compu-
tationally less demanding than one-hot-encoding, and allows us to work with numerical
data [25,45]. Despite these advantages, the main drawback of this technique is that it can
be affected by overfitting since the encoding depends on the target [45]. Furthermore, a
bias can be introduced in the ML model when categories with few samples are replaced
by values close to the desired target feature since the model over-trusts the target encoded
feature and the model is prone to overfitting. To overcome this problem, we applied a
regularization-based approach that uses a smoothing parameter w aiming to shrink the
effects toward the global mean [25].
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2.2.2. Feature Selection Using Bootstrap Resampling Test

The performance of ML models can be affected by the number of input features [33].
To cope with this problem, FS techniques aim to find a subset of the input features that best
describes the underlying structure of the data [46]. In this paper, we used a non-parametric
technique called bootstrap resampling to estimate the distribution of a statistic (e.g., the
mean) by obtaining samples from a population without replacement [47,48]. To do this,
we resampled individuals of both classes 3000 times with the same number of samples
each time (balancing the classes). For each resampling, we determined the mean difference
∆ between the populations and the confidence interval (CI) computed at the 95% level
(95% percentile) for each feature [48]. The null hypothesis H0 holds true if 0 ∈ CI∆; the
alternative hypothesis H1 holds true when 0 6∈ CI∆ (no overlapping of the CI∆ with the
zero value). Given a dataset X = {xi}N

i=1 consisting of n patients, with i-th being the
sample represented by a vector of d features, for a classification analysis, d̂ features that
fulfill H1 will be selected (being d̂ < d).

2.2.3. Resampling Techniques for Imbalance Learning

Most ML algorithms work reasonably well when the number of training samples in
the different classes is almost equal (balanced dataset) [49]. Nevertheless, in real-world
scenarios, it is common that the distribution of training samples for each class is skewed.
This hampers the application of ML algorithms since the learning process can be monopo-
lized by samples of the majority class, impacting the generalization and performance of
the classifiers [49]. To address this, class balancing strategies, which include oversampling,
undersampling, and a hybrid approach are used to modify the class distribution of imbal-
anced datasets [8]. In undersampling, a random number of samples of the majority class is
discarded [50]. However, the aim of oversampling techniques is to increase the number of
samples by creating samples from the minority class. In this latter approach, exact copies
of the training samples in the minority class can be created and therefore the generalization
capabilities may decrease [10]. In the case of the hybrid strategy, the two approaches just
exposed are used. The idea is to balance the number of the training samples in both classes
by first oversampling the minority class and then undersampling the majority class.

In this paper, we compared the results when using different oversampling meth-
ods, using Random Under Sampling (RUS) as a benchmark. Among the most common
oversampling methods, SMOTE [10] and variants such as SMOTE nominal (SMOTEN)
have been applied in prior works for balancing datasets, improving the performance of
predictive models [11,12]. The SMOTE algorithm is based on oversampling the minority
class by adding random synthetic samples from the minority class [51]. Since SMOTE
only deals with continuous features, SMOTEN [10] has been proposed for dealing with
categorical features.

This section also presents the two generative neural network models implemented in
this work: TVAE [52] and GANs [53]. TVAE is based on VAE, a latent generative model
proposed by Kingma and Welling [52] which is composed of two parts, a generative and an
inference model. In the generative part, given a sample x, a probabilistic decoder produces
a distribution over the latent values z. In the inference part, a probabilistic encoder outputs
a latent variable z into x̂. The variational lower boundary of the marginal likelihood of
the input data is selected as an objective function of VAE. In recent years, VAE has been
extensively used in applications such as image/text classification, anomaly detection or
image generation [54]. To generate structured/tabular data, the variant TVAE proposed
in [21] allows the generation of mixed-type tabular data.

GANs were proposed by Goodfellow [53] and are generative models composed of
two ANNs: (i) A generator G that takes a random vector z from a distribution Fz ∼ N (0, 1)
and projects it to a vector x̂; and (ii) a discriminator D that seeks to discriminate between
real and synthetic data. The goal of G(·) is to generate synthetic data with characteristics
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that are as close to real data as feasibly possible. G(·) and D(·) aim to optimize a zero-sum
min-max game, with the value function V(G, D) as follows:

min
G

max
D

V(G, D) = Ex∼ρdata(x)[logD(x)] +Ez∼ρz(z)[log(1− D(G(z))),

where ρdata(x) and ρz(z) are the distribution of the real data and that of the samples
generated by G, respectively. Symbols x and z represent the samples from the input and
the latent space, and Ex and Ez are the expected log-likelihood from the different outputs
of both real and generated samples.

GANs have been used in a variety of applications because of their great performance in
generating synthetic data, particularly receiving a lot of interest in the computer vision field
due to their ability to generate synthetic images [19]. Although GANs have been extensively
applied for generating new images, only a few research studies have proposed these models
when dealing with structured data. Among them, CTGAN proposed by [21] has been
proposed for generating tabular mixed data (handling both continuous and categorical
features). As stated, categorical features present a challenge for GANs since both the
generator and the discriminator need to be differentiable. To solve this, the Wasserstein
divergence and the weight-clipping with a gradient penalty are used by the CTGAN [21].

2.2.4. Quality Metrics for Synthetic Data

Let be a dataset X = {xi}N
i=1 represented by a N× d matrix, consisting of i = {1, . . . , N}

samples and j = {1, . . . , d} features, with the i-th sample represented by a vector xi = [x(1)i ,

x(2)i , . . . , x(d)i ]. X was partitioned into training subset Xtrain and test subset Xtest, with 80%
and 20% of the samples, respectively. From Xtrain, we selected the samples associated with
the minority class XR (real data) and oversampling techniques were used for creating the
synthetic dataset XS. The number of synthetic samples generated directly depends on
the Imbalance Ratio (IR), defined as IR = Nmin/Nmaj, with Nmin and Nmaj indicating the
number of samples of the minority and the majority class, respectively.

The main goal of oversampling techniques is to generate synthetic samples from
original data that capture underlying data structure, including the distribution of features
and correlations between them. To examine whether the features of the synthetic dataset
truly mimic the real features, we used several data quality metrics. To quantify the similarity
between a pair of real and synthetic PMFs of XR and XS, and for measuring univariate
attribute fidelity, we used the symmetric Kullback–Leibler Divergence (KLD) [55] and the
Hellinger Distance (HD) [56].

• KLD [55] measures the similarity between two PMFs. Given two PMFs, Pv and Qv, for
a given feature v, the KLD is defined as:

KLD(Pv||Qv) =
1
2

KLDns(Pv||Qv) +
1
2

KLDns(Qv||Pv)

KLDns(Pv||Qv) =

c f

∑
i

Pv(i)log
Pv(i)
Qv(i)

KLDns(Qv||Pv) =

c f

∑
i

Qv(i)log
Qv(i)
Pv(i)

.

Note that c f is the number of categories for a given feature v, and ns denotes the
non-symmetric KLD. When both distributions are identical the symmetric KLD is zero,
while larger values indicate a larger discrepancy between the two PMFs.

• HD [56] quantifies the similarity between two PMFs, Pv and Qv, for a specific feature
v as follows:



Appl. Sci. 2023, 13, 4119 10 of 23

HD(Pv, Qv) =
1√
2

√√√√ c f

∑
i=1

(√
Pv(i)−

√
Qv(i)

)2

where c f is the number of categories for a given feature v. HD is ranged between 0 and
1, with 0 indicating that the two distributions are practically identical and 1 showing
that they are the furthest apart.

To complement the information provided by the aforementioned measures, we ad-
ditionally proposed in this work two metrics, named Mean Absolute Error Probability
(MAEP) and Repeated Sample Vector Rate (RSVR):

• MAEP measures the absolute difference between two PMFs. Given PMFs Pv and Qv
for a given feature v, MAEP is defined as follows:

MAEP(Pv, Qv) =

c f

∑
i=1
|Pv(i)−Qv(i)|,

where c f is the number of categories for a given feature. KLD, HD and MAEP allow us
to assess univariate attribute fidelity by determining the similarity between marginal
distributions of XR and XS.

• RSVR indicates the rate of repeated sample vectors in the synthetic data XS, denoting
how well the oversampling methods create unique vectors. It is worth noting that
this metric is directly related to the number of samples generated. As IR increases, the
probability of appearance of repeated vectors may augment, and consequently the
RSVR value.

It is important to remark that KLD, HD and MAEP are defined here at the feature level,
i.e., they are computed for a single feature. To calculate an overall measurement, the average
value across all features is computed by aggregating the contribution of each feature.

Furthermore, to evaluate if the oversampling methods capture adequately the relation-
ships between features, the Pairwise Correlation Difference (PCD) [57] and the Log-Cluster
Metric (LCM) [58] were considered.

• PCD quantifies the difference between the correlation matrices of XR and XS [57], thus
measuring the correlation among features that the different methods of oversampling
can capture. It is defined as:

PCD(XR, XS) = ‖Corr(XR)− Corr(XS)‖.

Corr(·) represents the correlation among features for XR and XS, and ‖·‖ is a matrix
norm that measures the similarity between two matrices (a scalar). Since we handled
categorical features, Cramér’s V correlation [59] was used. Small PCD values indicate
that relationships between features are preserved, meaning that XR is more similar to
XS in terms of linear correlations across the features.

• LCM [58] measures the similarity of the underlying latent structure of XR and XS in
terms of clustering. This metric relies on two steps. Firstly, XR and XS were merged
into one single dataset, and then a cluster analysis using the k-means algorithm [60]
was performed on this dataset with a fixed number of clusters k [57]. LCM is defined
as follows:

LCM(XR, XS) = log

1
k

k

∑
i=1

[
nR

j

nj
− c

]2
,

ni being the number of samples in the i-th cluster, nR
i the number of samples from

the real dataset in the i-th cluster, and c = nR/(nR + nS) (where nR and nS are the
numbers of real and synthetic samples, respectively) [57]. High values of LCM denote
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disparities in the cluster memberships, indicating high differences in the distribution
of XR and XS [57].

2.2.5. ML Classifiers and Figures of Merit

The ML classifiers used in this work were the following: LASSO [32], SVM [33], DT [34]
and KNN [35]. To select the best hyperparameters for each classifier, we considered a k-fold
Cross Validation (CV) [33] strategy with the training subset. We followed the 3-fold CV
approach, and the sensitivity and the Area Under the Curve (AUC) of the receiver operating
characteristic were considered as figures of merit to evaluate the predictive performance of
the classifiers. Although binary classification has been studied extensively and standard
evaluation measures are used to characterize classifier performance, many are unsuitable
in imbalanced scenarios since performance in the majority class will be overrepresented.
In imbalanced learning, the main objective is to improve the classification of minority
class samples while maintaining reasonable performance concerning the majority ones.
For this reason, we decided to use sensitivity and AUC metrics. Sensitivity measures the
impact on the predictive performance of the minority class, while AUC provided us with a
compromise metric between sensitivity and specificity. The following hyperparameters
were tuned: λ for the LASSO model, C for the SVM model, the maximum tree depth and
the minimum number of samples to split a node for DT, and the number of neighbors
for KNN. The performance and post-hoc interpretability of the classifiers (LASSO, SVM,
DT, KNN) were obtained when considering different resampling techniques (RUS and
oversampling techniques (SMOTEN, TVAE, and CTGANs) and different class balancing
strategies (only undersampling strategy, only oversampling strategy, and hybrid strategy)
using different IRs.

3. Results

In this section, we analyzed the impact of combining one oversampling technique
and one ML approach in a binary classification scenario for identifying between healthy
individuals and CVD subjects. The experimental setup and then the figures of merit
obtained are presented, including a comparison of classification performance by using all
features and those selected by FS. Finally, post-hoc model interpretability based on the
importance of the features was conducted.

3.1. Experimental Setup

The dataset was randomly split into training (80%) and test (20%) subsets (see Figure 2),
and five independent training and test partitions were considered to further evaluate the
performance of the model. The training subset was used for the model design, while
the test subset was used to evaluate its performance (i.e., to evaluate its generalization
ability). Bootstrap resampling was used to remove those features that were non-relevant
and uninformative for predicting the target variable. Using this method, d̂ = 14 features
were selected from the d = 26 initial features. Before training the classifiers, different
values of the smoothing parameter w (between [0.0, 1.0]) were investigated to ensure proper
use of the target encoding technique selected, addressing the over-fitting issue raised
by target-agnostic approaches. The AUC values were used to select the best w for our
dataset. Experimental results showed that lower values of w offer better AUC values, and
consequently were more suitable for the binary classification scenario. In this paper, a
regularization smoothing parameter of w = 0.1 was chosen for subsequent analyses.

3.2. Quality Evaluation of Synthetic Clinical Data

Several data quality metrics were considered to evaluate the similarity between syn-
thetic and real data according to different IRs. As stated in Section 2.2.4, the PMFs associated
with the different features were estimated as the previous step for computing these metrics.
In Figure 3, the estimated PMFs associated with age, BMI, sex, and high cholesterol are
depicted. The panels in the first column of the figure show the estimated PMF for those
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features when considering real data, and the remaining represent the PMFs estimated from
synthetic data when using SMOTEN, TVAE and CTGAN. We aim to measure the similarity
between the PMF of real data and that estimated with synthetic data, comparing how well
the different oversampling methods can reproduce the PMF estimated using real data.
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Figure 3. Estimations of the PMFs associated with: (a) age; (b) BMI; (c) sex; and (d) high cholesterol.
Estimated PMF obtained using real data (first column); SMOTEN (second column); TVAE (third
column); and CTGAN (fourth column).

Remarkably, the PMFs estimated using data generated with TVAE do not follow
the probability distribution linked to the real data, showing a lack of probability values
in certain categories. For instance, if we look at the age feature (see Figure 3a), in the
PMF of synthetic data obtained with TVAE (third column), there are categories without
samples, specifically for 16–20, 30–39 and NA. In the same manner, for the BMI feature (see
Figure 3b), the categories HW, NA, OBC-II and OBC-III do not have values. Additionally,
in some categories, the probability is much higher than that obtained when using real data
(see the category OW in the BMI feature). We conclude that TVAE is the method that worst
mimics the distribution for the four features considered. This further points out the low
performance of TVAE for replicating samples of categorical data. By analyzing SMOTEN,
we find similar insights that in TVAE. There are categories in the estimated PMF with zero
values (see panels (a) and (b) associated with age and BMI). Regarding CTGAN, note that
the PMFs estimated using the generated data are quite similar to those estimated using
real data. All categories have probability values different from zero and they are similar to
those estimated when considering real data. The insights drawn from these figures allow
us to understand how similar the synthetic and real data are to one another in terms of
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univariate attribute fidelity, CTGAN being the oversampling approach that more precisely
emulates the real distributions.

The next step was to analyze the data quality metrics considering different IR values
(see Figure 4). We observed that, in terms of KLD, HD, MAEP, and RSVR (panels (a),
(b), (c) and (d), respectively), CTGAN showed the best results. Note that lower values
in these metrics indicate more similar distribution probabilities associated with features.
Regarding PCD (Figure 4e), which measures whether the correlations between features
are preserved, CTGAN also reached the lowest values compared to SMOTEN and TVAE.
For LCM (Figure 4f), where the lower values indicate fewer differences in the distribution
between XR and XS, it was SMOTEN that reached the lowest values, followed by CTGAN.
Regarding RSVR (Figure 4d), CTGAN showed the lowest values, indicating that it generates
fewer repeated vectors.
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Figure 4. Mean ± std for the synthetic data quality metrics when considering a range of IR values
(from 0.5 to 1) and different oversampling techniques (SMOTEN, TVAE and CTGAN). (a) KLD;
(b) HD; (c) MAEP; (d) RSVR; (e) PCD; (f) LCM.

Table 2 presents a summary of the quality metrics that analyzes: (i) the similarity
between the features of XR and XS (KLD, HD, and MAEP) and (ii) the relationships
between features captured (PCD and LCM). The results of RSVR are shown to identify
the percentage of repeated vectors generated by the oversampling methods. Note that
these metrics were obtained considering IR = 1.0 and 5 different training partitions, and
we present the mean and the standard deviation (std). As previously mentioned, CTGAN
more accurately simulated true distributions, achieving the best KLD, HD, and MAEP
values. Regarding PCD, which measures how well the correlations between features are
captured, CTGAN also reached the best performance (the lowest value). CTGAN also
obtained the lowest RSVR value, generating less repeated vectors associated with subjects.
It is in LCM where SMOTEN reached a better performance (lowest values). Therefore, we
conclude the potential of CTGAN for generating categorical synthetic data against other
oversampling methods.
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Table 2. Mean ± std (evaluated on 5 training partitions) of the data quality metrics for different
oversampling techniques when considering IR = 1.0. The best values are shown in bold.

Method KLD HD MAEP RSVR PCD LCM

SMOTEN 0.092 ± 0.004 0.168 ± 0.006 0.298 ± 0.014 0.609 ± 0.011 0.005 ± 0.001 −8.116 ± 0.407
TVAE 0.299 ± 0.022 0.313 ± 0.013 0.590 ± 0.032 0.177 ± 0.020 0.006 ± 0.001 −3.926 ± 0.517

CTGAN 0.017 ± 0.002 0.061 ± 0.003 0.145 ± 0.006 0.001 ± 0.001 0.003 ± 0.001 −6.110 ± 0.235

3.3. Classification Performance

This section presents the classification results provided by linear (LASSO and SVM)
and nonlinear (DT and KNN) classifiers using SMOTEN, TVAE, and CTGAN and consider-
ing different resampling strategies.

In Figure 5, we show the mean and std of sensitivity and AUC values on 5 test subset
partitions, considering different classifiers (LASSO, SVM, DT and KNN) and oversampling
strategies. It can be seen that there is a direct relationship between the IR and the model
performance in terms of sensitivity and AUC, indicating that the higher the number of
synthetic samples generated, the better the performance of the ML models. By analyzing
Figure 5a,c,e, it can be observed that the sensitivity values present high variability for the
DT model and all oversampling methods. On the contrary, the linear models LASSO and
SVM present lower variability (low std), being the most robust classifiers. For small IR
values (0.4), the AUC is approximately 0.6 for all models (see Figure 5b,d,f), achieving
better performance when the IR increases. The highest AUC values are obtained when
CTGAN linear models are considered (see Figure 5f).
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Figure 5. Mean ± std of the sensitivity (left panels) and AUC (right panels) considering 5 test subset
partitions and different IR values, classifiers (LASSO, SVM, DT and KNN) and an oversampling
approach with: (a,b) SMOTEN; (c,d) TVAE; and (e,f) CTGAN.
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In general, the best figures of merit are obtained when applying linear models and
considering SMOTEN and CTGAN techniques. The results obtained for TVAE are slightly
different, where higher values are obtained with the nonlinear KNN model than with the
linear models, specifically when IR increases. We can conclude that the best performance is
obtained when considering CTGAN and IR = 1.0, i.e., when the number of samples of the
minority and the majority classes is the same.

Next, we show in Figure 6, the sensitivity and AUC values when using different
classifiers and the hybrid resampling approach. Two main insights can be drawn. Firstly,
in general terms and referring to the six panels, it can be observed that the increase in the
IR values (from 0.5 to 1.0), which refers to the increase in the generation of the number
of samples of the minority class, does not have a positive impact on the classification
measures (neither for sensitivity nor for AUC). For this approach, generating a high num-
ber of synthetic samples from the minority class and training the ML classifiers with a
more substantial number of synthetic data does not imply obtaining a better predictive
performance. This indicates that, after a given IR value, no matter how many additional
samples are added, the performance remains unchanged. In terms of sensitivity and AUC,
it is interesting to note that linear models (LASSO and SVM) using SMOTEN and CTGAN
provide best performance than when using nonlinear models such as DT and KNN.
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Figure 6. Mean ± std of the sensitivity (left panels) and AUC (right panels) considering 5 test subset
partitions and different IR values, classifiers, and a hybrid approach (by combining undersampling
and oversampling strategies) with: (a,b) SMOTEN; (c,d) TVAE; and (e,f) CTGAN.

Table 3 summarizes the best sensitivity and AUC values using different resampling
methods and class balancing strategies. These results are presented considering all variables
(d = 26) and only the selected variables (d̂ = 14) when using the bootstrap resampling
method. Comparing the figures of merit obtained using 26 and 14 features, it is observed
that models using 14 features show a slight improvement in the classification performance
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for most of the models. Mainly, this improvement can be seen when considering TVAE
and the hybrid technique (average AUC value of 0.66 with all variables versus 0.70 with
FS). However, the best performance is obtained when CTGAN and the hybrid strategy are
considered, also outperforming the results provided by the undersampling approach.

Table 3. Sensitivity and AUC values (mean ± std) on 5 test subsets when training ML models using
different resampling strategies with all features and FS. The highest average performance for each
figure of merit is marked in bold.

Method Balancing
Strategy Sensitivity (All) Sensitivity (FS) AUC (All) AUC (FS)

RUS Under 0.711 ± 0.059 0.707 ± 0.041 0.697 ± 0.025 0.706 ± 0.021
SMOTEN Over 0.701 ± 0.046 0.708 ± 0.054 0.701 ± 0.025 0.700 ± 0.012

Hybrid 0.686 ± 0.028 0.707 ± 0.014 0.694 ± 0.012 0.709 ± 0.020
TVAE Over 0.636 ± 0.067 0.640 ± 0.013 0.650 ± 0.027 0.668 ± 0.024

Hybrid 0.615 ± 0.023 0.694 ± 0.041 0.661 ± 0.026 0.704 ± 0.016
CTGAN Over 0.699 ± 0.044 0.695 ± 0.021 0.702 ± 0.026 0.707 ± 0.017

Hybrid 0.716 ± 0.043 0.709 ± 0.036 0.712 ± 0.017 0.711 ± 0.021

3.4. Analyzing Risk Factors Using Interpretability Methods

The average values of the coefficients in the five partitions assigned to each feature
when training the classifiers using different oversampling methods (SMOTEN, TVAE and
CTGAN), with an IR ranging from 0.4 to 1.0, are shown in Figure 7. Note that the values of
the coefficients associated with each feature do not change substantially as IR increases.
As a result, we conclude that the increasing fraction of synthetic samples generated has
not much impact on the fact that some features are more relevant to predicting CVD.
Regarding the LASSO model and the DT model for each specific oversampling approach,
the coefficient values are similar, with many of them being zero in both models, nullifying
the impact of that variable. However, the value of the coefficients fluctuates between
positive and negative values for the SVM model (middle panels), with positive values
indicating a greater influence of the variable on the prediction of subjects with CVD and
negative values indicating a greater influence of the variable on the prediction of healthy
individuals.

Note also that the weight (coefficient) assigned to each variable varies depending on
the oversampling strategy used. This means that the method considered for generating
synthetic samples could influence the features that are deemed most important to decide
the final classification. In this sense, when applying SMOTEN and CTGAN, and especially
when comparing LASSO and DT, the pattern of the coefficient values is comparable, with
age, BMI, high cholesterol, and sex being the most significant factors in predicting CVD.
TVAE, on the other hand, exhibits a somewhat different pattern; in this case, while age
remains the most important predictor in predicting CVD, it is followed by preprocessed
meat, strenuous activity, and BMI.

We focus now on SHAP [36], a post-hoc interpretability approach used for noninter-
pretable ML models. Figure 8 shows the SHAP summary plot when training the nonlinear
model KNN with the CTGAN oversampling method, the oversampling class balancing
strategy, and IR = 0.6. The summary plot provides different information concerning the
interpretability of the model. It presents the importance of the 20 most relevant features
as well as their impact on the prediction. The remaining features did not provide relevant
information, and it was decided to make the cut-off on these 20 features. Each point repre-
sented in the summary plot is a Shapley value for a specific feature and a specific sample.
The position on the x-axis shows the Shapley value assigned to each sample, whereas the
y-axis shows the relevance of the features in descending order. For the KNN classifier,
the three most relevant features in the prediction are the presence of high cholesterol, age,
and sex, all coinciding with the results obtained for the linear models. As for the colors,
the SHAP summary plot represents the value of the feature from lowest (blue) to highest
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(red). Thus, observing the most relevant variables, we can conclude that higher values of
high cholesterol, age and sex are mostly associated with the prediction of subjects with
CVD, and lower values of these variables are associated with the prediction of healthy
individuals. On the contrary, for example, in the case of the alcohol variable, higher values
of this variable are relevant in predicting healthy individuals, and lower values are related
to predicting subjects with CVD.

Figure 7. Coefficient values for different IR when using LASSO (left panels), SVM (middle panels),
and DT (right panels) and the oversampling methods with all features: SMOTEN (first row); TVAE
(second row); and CTGAN (third row).
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Figure 8. SHAP summary plot of KNN model using the CTGAN oversampling technique and all
subjects as well as their impact on the prediction. Only the 20 most relevant features are shown.

4. Discussion

In this work, different resampling methods were used, highlighting the use of CT-
GANs as an oversampling technique to generate synthetic data for achieving data balance
among different classes in a classification problem. In particular, a dataset with real-world
data from healthy individuals and individuals with CVD was employed to carry out
the synthetic data generation. Different metrics for quality assessment of the generated
synthetic datasets were analyzed and discussed.

Our results demonstrated the high potential of CTGANs for generating categorical
data, keeping relevant information, and improving classification performance. The follow-
ing five findings are particularly important to this study. Firstly, the GAN-based model
generates high-quality synthetic data, yielding a PMF that is very close to that estimated
using real data. This makes a significant contribution to the literature, showing the po-
tential of GANs in the clinical setting [21]. Secondly, it has been demonstrated that linear
classifiers outperform nonlinear ones when using target encoding. Thirdly, the combination
of the GAN and LASSO-based models yields an AUC value of 71%. Finally, because of
the interpretive capabilities of our models, the findings of this study may help to improve
both the prediction and prevention of CVD and the knowledge of the risk factors related to
CVD. The most important risk factors for CVD prediction identified in all models were the
presence of high cholesterol, age, BMI, and sex.

The previous findings are consistent with the primary CVD risk factors identified in
the literature [61–63]. According to [61], BMI is one of the most critical criteria to consider
since excessive adiposity is a significant risk factor for morbidity and death from type
2 diabetes, CVD, and different types of cancer. On the one hand, individuals from high-
income countries are more likely to consume healthy foods, according to [64]. On the
other hand, low-income people tend to consume more fat and less fiber, which explains the
average importance of characteristics such as fish or meat consumption in the prediction
of CVD. Furthermore, individuals in low- and middle-income countries are more likely
to drink alcohol and smoke than socioeconomic groups in high-income countries, which
explains the importance of these features for predicting CVD, according to [65].

Despite the potential benefits of using clinical data for research, these data are highly
sensitive, and their use is restricted by privacy legislation and organizational guidelines [66].
Additionally, patient data are regulated by laws protecting patients’ privacy such as the
Health Insurance Portability and Accountability Act in the United States and the General Data
Protection Regulation in the European Union [67]. The sharing of public health data has
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always been hampered by privacy concerns. Furthermore, in the clinical setting, most of
the populations studied are commonly unbalanced, with the class of patients with a certain
disease typically being smaller than the class of healthy individuals. In this way, synthetic
data could allow researchers to delve deeper into complex medical issues, eliminating
challenges such as a lack of access to protected data and addressing the issue of class
imbalance [49].

As discussed throughout the previous sections, one of the main challenges when
working with categorical data is to conduct an appropriate encoding process. In a prior
author’s work [68], one-hot encoding was evaluated, while in the current paper, target-
encoding was considered. Target-encoding with regularization was shown to be an efficient
technique for encoding categorical features, which do not increase the dimensionality
in the analysis and allow us to achieve better results in predictive classification metrics.
Despite its utility for handling the cardinality of categorical features, as argued, target-
encoding presents certain limitations. It does not perform well when categories have few
training samples because mean target values for these categories may be not representative
(assigning extreme values), thus changing the original data distribution and deteriorating
the subsequent performance of predictive algorithms. As future work, other types of
techniques, such as integer, frequency, indicator, hash, leaf, and impact encoding, as
well as a generalized linear mixed model encoder (detailed in [25]), can be explored and
validated using data of CVD individuals in predictive tasks. In line with this, in real-
world applications, the presence of categorical and numerical data is common. Our results
showed that CTGAN outperforms other oversampling techniques, working reasonably
well with one type of data and in one scenario of binary classification. An extended analysis
can be conducted using heterogeneous clinical datasets that contain mixed-type data and
consider multi-class classification scenarios. This will provide us with insights into the
robustness and effectiveness of GAN-based models in more complex applications from a
data perspective.

Further works will assess the findings achieved in this work by employing several
different real-world clinical and nonclinical datasets. In particular, Framingham [69] and
Steno [70] datasets can be used for evaluating resampling techniques. Additionally, an
extended analysis of the use of CTGAN, which outperforms other oversampling techniques
for identifying CVD disease in this paper, using these clinical datasets, can reveal the robust-
ness of GAN-based models in scenarios with heterogeneous data. Furthermore, the quality
of the synthetic data could be assessed by designing specific classifiers able to provide
discrimination between real and synthetic data, evaluating in this way the performance of
the oversampling techniques. In this sense, ensemble classification techniques have been
demonstrated to improve performance in predictive applications [71–74] , which is a line
of a research that can be further explored. Finally, other filter, wrapper and embedded FS
techniques (such as mRmR, RELIEF, LASSO, Random Forest) could be studied in order to
confirm the findings of this work related to the most relevant features selected to improve
the performance and the interpretability of the ML models.

5. Conclusions

ML methods have become increasingly important for improving the performance
of prediction models that could support decision-making. However, although these ap-
proaches have been applied in real-world scenarios, the class imbalance problem is a
significant drawback in the development and performance of ML models. The main chal-
lenge lies in the fact that skewed class distributions hinder the proper learning process. In
the clinical setting, most of the populations being studied are undersampled compared to
healthy individuals, which limits the application of ML models. The use of synthetic data
in conjunction with real data allows us to address these issues, improving the performance
of ML models and achieving a better NCD prediction. In this paper, we evaluated the
effectiveness of oversampling techniques (especially GAN-based approaches) in a scenario
of binary classification to identify patients with CVD. Experimental results showed that the
combination of a GAN-based model (CTGAN) and LASSO achieved an AUC value of 71%,
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outperforming the results of other oversampling strategies and the match-point method of
the undersampling strategy. These advances in health informatics could help with clinical
decisions, potentially changing the course of a chronic disease or health condition. Finally,
the favorable impact of these decisions on cost savings and patient satisfaction would be
significant from both clinical and socioeconomic standpoints.
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