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Abstract: Continuous glucose monitoring (CGM) represents a significant advancement in diabetes
management, playing an important role in glycemic control for patients with type 1 diabetes (T1D).
Despite their benefits, their performance is affected by numerous factors such as the carbohydrate
intake, alcohol consumption, and physical activity (PA). Among these, PA could cause hypoglycemic
episodes, which might happen after exercising. In this work, two main contributions are presented.
First, we extend the performance evaluation of two glucose monitoring devices, Eversense and
Free Style Libre (FSL), for measuring glucose concentrations during high-intensity PA and normal
daily activity (NDA). The impact of PA is investigated considering (1) different glucose ranges
(hypoglycemia, euglycemia, and hyperglycemia); and (2) four time periods throughout the day
(morning, afternoon, evening, and night). Second, we evaluate the effectiveness of machine learning
(ML) models, including logistic regression, K-nearest neighbors, and support vector machine, to
automatically detect PA in T1D individuals using glucose measurements. The performance analysis
showed significant differences between glucose levels obtained in the PA and NDA period for
Eversense and FSL devices, specially in the hyperglycemic range and two time intervals (morning
and afternoon). Both Eversense and FSL devices present measurements with large variability during
strenuous PA, indicating that their users should be cautious. However, glucose recordings provided
by monitoring devices are accurate for NDA, reaching similar values to capillary glucose device.
Lastly, ML-based models yielded promising results to determine when an individual has performed
PA, reaching an accuracy value of 0.93. The results can be used to develop an individualized data-
driven classifier for each patient that categorizes glucose profiles based on the time interval during
the day and according to if a patient performs PA. Our work contributes to the analysis of PA on the
performance of CGM devices.

Keywords: continuous glucose monitoring; type 1 diabetes; physical activity; machine learning; TabPFN

1. Introduction

The prevalence of type 1 diabetes (T1D) is increasing about 2–3% per year world-
wide [1]. T1D is a chronic disease caused by the destruction of insulin-producing beta
cells in the pancreatic islets, leading to either absolute or partial insulin deficiency [2]. To
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treat this disease and maintain normal glycemic levels, patients require exogenous insulin
administration via either multiple injections or continuous subcutaneous insulin infusion
such as pumps [2]. The insulin dose is adjusted according to metabolic needs defined
mainly by glucose concentrations, carbohydrate intake, and physical activity (PA) [3]. The
monitoring and control of glucose is essential to achieve target glycemic control, determin-
ing more accurate insulin doses, and diminishing insulin-related complications such as
hypoglycemia [4].

Capillary blood glucose monitoring devices have historically been the standard and
most established technology for the management of T1D. However, continuous glucose
monitoring (CGM) devices have become one of the most relevant advancements, showing
similar accuracy to capillary glucose devices [5]. CGM devices use subcutaneous tissue
sensors that provide interstitial fluid glucose measurements at regular time intervals
and without need for frequent capillary blood glucose measurements [6]. CGM devices
provide periodic information about the glycemic levels and may serve as an alarming
tool in the onset of hyperglycemic and hypoglycemic events. Several clinical trials have
demonstrated that CGM devices help to better adjust insulin doses, improve glycemic
control and maintain target glycated hemoglobin [7]. However, the glucose measurements
and the performance of CGM devices can be affected by several factors such as administered
insulin, carbohydrate intake, and PA [8].

A balanced diet and regular exercise are highly recommended by physicians to main-
tain a healthy lifestyle. Several studies have shown that PA improves blood lipid profiles,
psychological well-being, and may reduce cardiovascular disease risk [9–11]. Despite these
benefits, glucose concentrations during PA are highly variable, increasing the use of glucose
storage and the risk of glycemic events [11]. For T1D patients, maintaining glycemic control
during and after PA is challenging because the risk of hypoglycemia is increased for up
to 24 h after the bout of exercise [12]. Additionally, strenuous exercise produces some
metabolic changes, particularly in the microcirculation and oxygen tension, which may
negatively affect the sensor accuracy of CGM devices [13]. Therefore, it is relevant to evalu-
ate the performance of CGM devices in different scenarios with PA and compare glucose
measurements during normal daily activity (NDA). This would help one to make better
decisions about the amount of food to consume and amount of exogenous insulin required,
thus mitigating the onset of acute events. Several studies have investigated the performance
of CGM devices during different activities, including, but not limited to high-intensity
interval training, long-distance running, and skiing [14–17]. However, the performance of
CGM devices during strenuous PA is still under study, and it is crucial to perform studies
that evaluate the accuracy of these devices in other scenarios with high-intensity PA.

Over recent years, machine learning (ML) methods have attracted great attention
in both academia and industry for the outstanding predictive performance in multiple
applications [18–20]. Many researchers have applied ML models in diabetes research for
detecting glycemic events [21,22], predicting glucose levels [23,24], and identifying clinical
patterns [25], among others. ML-based models are promising to automatically detect and
classify whether a patient has performed PA or not, which can help T1D individuals in
the management of exercise-induced glycemic changes, thus mitigating long-term health
risks [26]. In the literature, most of the studies proposed to detect PA rely on the use of
heart rate sensors, accelerometers, and other movement sensors [27–29]. This study makes
sense given that many patients have easy access to these technologies and only few studies
have considered glucose data to detect and classify PA [30,31].

In this work, two main contributions are presented. First, we extend the analysis of
the impact of high-intensity PA (particularly, mountain biking) on glucose concentrations
measured by two CGM devices, the FreeStyle Libre Flash (FSL) and Eversense, which are
based on glucose oxidase and fluorescence, respectively. A statistical and comparative anal-
ysis were conducted by employing glucose measurements from each of these CGM devices
against reference values obtained from capillary glucose measurements using two-group
tests. The impact of PA is investigated during two periods, including PA and NDA, and
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considering (i) different glucose ranges (hypoglycemia, euglycemia, and hyperglycemia);
and (ii) four time intervals throughout the day (morning, afternoon, evening, and night).
Second, we evaluate the effectiveness of using CGM data and supervised ML-based models
to automatically detect PA in T1D individuals. To achieve this, we employed data from
the Bas van de Goor Foundation challenge, where 23 T1D subjects measured glucose with
devices during periods of strenuous PA and NDA. T-tests and Mann–Whitney U tests were
performed to statistically measure differences in glucose ranges and time intervals during
NDA and PA. Logistic regression (LR), K-nearest neighbors (KNN), and support vector
machine (SVM) were used to classify PA using glucose measurements.

2. Materials and Methods

In this section, we present the study design and the dataset description and prepro-
cessing. Then, we detail the parametric and nonparametric statistical tests to measure
significant differences between glucose measurements in different glucose ranges and
intervals during the day, and the ML models used to identify whether a T1D individual
performed PA or not. Finally, we present the feature selection methods and post hoc inter-
pretability methods used to identify the most relevant features involved in the detection
of PA.

2.1. Study Design and Participants

In this study, we employed the data collected at the Bas van de Goor Foundation
challenge, where 23 T1D subjects (10 men and 13 women) from Spain and the Netherlands
performed high-intensity PA using mountain bikes in Sierra Nevada [32]. The participants
covered a total distance of 263 km at altitudes between 4753 and 11,000 m. Data acquisition
was conducted by the authors in [32], a prospective and observational study where the per-
formance of CGM devices was also analyzed during strenuous PA. The study was approved
by the Medical Ethical committees in Spain (Hospital Universitario Central de Asturias;
163/18) and the Netherlands (Isala Hospital; NL66388.075.18/180603) and registered in
the Dutch trial register (https://www.onderzoekmetmensen.nl/en number NL7133). The
authors in [32] obtained the written informed consent by the 23 T1D participants.

The study was conducted during 12 days (two weeks) in two separate periods. In the
first period (week 1), subjects performed high-intensity PA, while in the second period
(week 2) after mountain biking, subjects carried out NDA with no sports activities. Three
different devices were used to record glucose concentrations during the periods of PA and
NDA: (i) the capillary device named Free Style Libre Precision NeoPro strip (shortened
to FSLCstrip); (ii) the fluorescence-based and subcutaneously implanted CGM device
(shortened to Eversense); and (iii) the glucose-oxidase CGM device (shortened to FSL).
In the current study, FSLCstrip was considered as the reference for obtaining glucose
levels because in prior research its capillary measurements were comparable with National
Institute of Standards and Technology standards to the gold reference method [33].

To extend the analysis of the performance of each CGM device against FSLCstrip
during the periods of PA and NDA, we studied the glucose measurements in four time
intervals throughout the day:

• Morning (Mint) from 6:00 to 12:00 h;
• Afternoon (Aint) from 12:00 to 18:00 h;
• Evening (Eint) from 18:00 to 24:00 h;
• Night (Nint) from 0:00 to 6:00 h.

We also studied the glucose measurements in three glucose ranges:

• Hypoglycemia (<70 mg/dL);
• Euglycemia (in the range [70, 180] mg/dL);
• Hyperglycemia (>180 mg/dL).

https://www.onderzoekmetmensen.nl/en
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2.2. Dataset Description and Preprocessing

The dataset was composed of 5166 glucose recordings belonging to 23 T1D subjects
and from the devices FSL, Eversense, and FSLCstrip. The glucose measurements were
acquired as follows. A total of 7 self-glucose measurements per day were obtained using
the FSLCstrip, while interstitial glucose values using Eversense and FSL were taken within
maximal 2 min of capillary measurement, ensuring the comparison of these technologies. To
visualize the distribution of glucose concentrations for each period, PA and NDA, we show
in Figure A1 of the Appendix A the box plots for each participant in the different periods.
Note that the periods PA and NDA are represented in blue and orange, respectively,
and using FSLCstrip (Figure A1a), Eversense (Figure A1b), and FSL (Figure A1c). In
Figure A2, we show the time series associated with glucose concentration values for all
subjects. Note that glucose values of each subject are depicted by a gray line and the mean
value at each time is represented with a red dotted line. The green dotted line shows the
limit for hyperglycemia (values above the line are in the hyperglycemic range), while the
blue dotted line represents the limit for hypoglycemia (values below the line are in the
hypoglycemic range).

2.3. Statistical Tests and Metrics to Measure Differences in Glucose Concentrations

To statistically measure the differences in glucose concentrations between PA and NDA
periods, and to identify the time interval and glucose range more affected by high-intensity
PA, several parametric and nonparametric tests were considered. Specifically, the following
statistical tests were considered: (i) the Shapiro Wilk test was used to perform the normality
test; (ii) the two-proportion z-test was used to determine whether two proportions from
two independent samples are significantly different; (iii) the (parametric) two-sample t-test
was used to compare and determine whether the difference between the means of two
populations exists; and (iv) the (nonparametric) rank-based Mann–Whitney U test was used
to identify differences between groups by considering their medians or means. The latter
method is commonly used when sample sizes are small and for non-normally distributed
data, being less sensitive to the non-homogeneity of the variance. For all these statistical
tests, a level of significance alpha = 0.05 was considered.

To assess the differences between glucose concentrations obtained from CGM de-
vices (Eversense and FSL) against the capillary glucose measurements (FSLCstrip), two
approaches were considered: (i) the deviation metrics mean absolute deviation (MAD) and
mean absolute relative deviation (MARD); and (ii) the proportion of glucose measurements
in zone A of the Clarke error grid (CEG) plot [34]. Given y = [y1, . . . , yN ] as the vector
representing the glucose measurements by FSLCstrip, and ŷ = [y1, . . . , yN ] as the vector
indicating the glucose measurements of FSL and Eversense. MAD and MARD are defined
as follows.

MAD =
1
N

N

∑
i=1

|yi − ŷi| (1)

MARD =
1
N

N

∑
i=1

∣∣∣∣yi − ŷi
ŷi

∣∣∣∣ (2)

where N is the total number of glucose measurements, yi is the ith measure obtained by
the reference device FSLCstrip, and ŷi is the ith measure obtained using FSL or Eversense.

The CEG is a visual tool used to quantify the accuracy of measured glucose values
compared to reference values, represented as a grid divided into five zones: A, B, C, D, and
E. Figure 1 shows an example of a CEG plot with the different zones. Zone A contains values
considered clinically accurate, indicating that the predicted glucose values would lead to
the correct treatment of the patient. Zone B indicates altered clinical action with little or no
effect on clinical outcome. The values in zone C indicate overcorrecting acceptable blood
glucose levels and those in zone D suppose dangerous failures since they are predicted as
being in an acceptable range when they are outside normoglycemia. Zone E values would
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also lead to erroneous treatment since the predicted values are opposite to the accurate BG
levels. Values in zones A and B are deemed clinically acceptable, while those in zones C, D,
and E are considered potentially unsafe. Since it is the most representative and contains the
largest amount of information, the analysis in this work is focused on studying the values
that fall in zone A.
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Figure 1. Example of a Clarke error grid plot.

2.4. Feature Selection Methods

Feature selection (FS) methods aim to select a subset of features from an original
feature set, identifying the most relevant features and discarding the irrelevant ones [35].
FS becomes crucial in predictive tasks because decreasing the number of features could
lead to maximizing generalization capacity and reaching better predictive results [36].
Additionally, FS may help in better data understanding and interpretability, which is
crucial in certain areas, such as healthcare. FS methods are generally split into three
categories [36]: filter, wrapper, and embedded methods.

Filter methods select features that present a strong relationship with the target and are
performed independently of any predictive model. These methods are computationally
efficient and fast because they do not involve a training stage of predictive models [36].
In this work, chi-squared (chi2) [37] and mutual information (MI) [37] were considered as
filter methods.

Wrapper methods iteratively train a predictive model to evaluate and choose the
feature subsets [38]. Depending on whether a forward or backward selection approach
is followed, the features are added or discarded until the best subset is identified [39].
Since these methods use several predictive models to select the feature subsets, they can
be computationally complex and time-consuming [38]. In this work, a backward selection
approach was considered, where the ML algorithm is initially trained with the whole set of
features to which one feature is discarded at each repetition until the algorithm is trained
with the empty set of features (backward selection approach) [40]. For performing wrapper
methods, a filter-based method using ML was employed to set the hierarchy of importance
of the features and select which feature to discard at each iteration.

Embedded methods intrinsically perform feature selection during the ML algorithm
training. We selected two tree-based embedded methods: decision tree (DT) and random
forest (RF), where the importance is used to select the features. Also, the regularized
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method least absolute shrinkage and selection operator (LASSO) [41] was included in
the analysis.

2.5. Supervised Machine Learning Models and Performance Metrics

In this paper, we employed different linear and nonlinear supervised ML-based models
for identifying if a patient has performed PA. In particular, we used four state-of-the-art
models, including DT, logistic regression (LR), K-nearest neighbors (KNN), and support
vector machine (SVM). We selected these ML models based on different factors, including
ease of implementation, extensive use in benchmarking studies, and because they have been
used and internationally validated in multiple clinical studies, reaching great performance.
Additionally, aiming to improve the predictive performance, we considered two ensemble
models RF and the extreme gradient boosting (XGB), the neural network-based model
named multilayer perceptron (MLP), and a novel predictive transformer-based model for
tabular data named TabPFN.

LR is a linear model used for classification that uses a logistic function that finds the
best fitting coefficients to describe the relationship between the independent variables
(input features) and the dependent variable (target/label vector) [42]. Once the LR model
is trained, it can be used to predict the probability of a sample belonging to a positive class
based on its input variables. A common threshold is set at 0.5, where probabilities above
the threshold are classified as positive, and those below are classified as negative.

KNN is a nonlinear model that classifies an unlabeled sample according to the class
that is most frequent within its K-nearest neighbors [43]. First, these neighbors are found by
a similarity measure (e.g., Euclidean distance), and then the unlabeled sample is assigned
the class that is most frequent within its K-nearest neighbors. KNN mainly depends on two
hyperparameters: the similarity measure and the number of neighbors K. The former is
used to measure how similar a sample is from others, being the Euclidean distance one of
the most used. The latter is representative of the neighborhood size. Choosing an adequate
value of K is highly related to predictive performance, with larger values generating more
complex model decision boundaries and smaller values creating simpler ones [43].

SVM is a model that allows both linear and nonlinear approximations [44]. SVM
aims to find an optimal hyperplane in a high-dimensional space (called feature space)
that separates the samples into a discrete number of predefined classes. This hyperplane
determines the margin between the classes, and when data are not linearly separable,
different kernel functions (e.g., polynomial, radial basis, sigmoid) can be used to maximize
margins between hyperplanes [45].

RF is a model that generates an ensemble of simpler models, particularly training
multiple DTs [46]. Each DT is trained using a subsample of the training set, and then, a
combination of the DTs are used to make the final predictions. This approach with different
samples and models helps to reduce overfitting and improve generalization.

MLP is a type of artificial neural network and it consists of an input layer, various
hidden layers, and an output layer, where each neuron in each layer is fully connected
to neurons in the subsequent layers. MLP uses nonlinear activation functions to learn
complex patterns and relationships from data, and the back-propagation algorithm is used
to update the weights of the connections by aiming to minimize errors.

TabPFN is a transformer-based model specifically designed for supervised classifi-
cation on tabular datasets [47]. It combines a transformer architecture called prior-data
fitted network (PFN) [47] and Bayesian inference to solve classification tasks over tabular
data. TabPFN does not require training from scratch on new data, and presents excellent
classification results and low computational complexity.

XGB is an algorithm based on a gradient boosting tree that employs an ensemble
approach to integrate several weak models and improve model predictions. It also involves
a better regularization strategy that can effectively overcome overfitting and improve
learning performance [48]. XGB offers scalability due to several algorithmic optimizations
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and handling sparse data with new tree learning scheme. It is one of the most used models
in benchmarking studies on tabular data.

To quantitatively evaluate the predictive performance, we used the following figures
of merit: accuracy, sensitivity, specificity, and F1-score [49], which take into account how the
model correctly or incorrectly predicts the positive class and negative class: true positives
(TPs), true negatives (TNs), false positives (FPs), and false negatives (FNs). Note that the
positive and negative class, in our case, correspond to ‘PA’ and ‘NDA’, respectively.

Accuracy =
TP + TN

TP + TN + FP + FN
(3)

Sensitivity =
TP

TP + FN
(4)

Specificity =
TN

TN + FP
(5)

Precision =
TP

TP + FP
(6)

F1-score = 2
Precision ∗ Sensitivity
Precision + Sensitivity

(7)

2.6. Post Hoc Interpretability Methods

During the last decade, the use of ML models has exponentially grown in multiple
areas, achieving great acceptance and popularity due to their remarkable results in super-
vised tasks [50]. Despite their benefits, most ML models are characterized by a lack of
interpretability (known as black-box models). Interpretability can be defined as the ability
of a human to understand the cause of a decision in computational models [51]. This is
essential to be considered and adopted in clinical practice, and several methods have been
proposed for extracting knowledge and gaining interpretability [52,53]. Many interpretabil-
ity methods have been proposed, with the post hoc and model-agnostic approaches the
most used [53]. These approaches that provide explanations through both inspection of
learned features and feature importance could support the identification of risk factors for
several diseases. In this work, the post hoc method called Shapley additive explanations
(SHAP) [54] was considered.

SHAP is a post hoc interpretability method based on the aggregation of local inter-
pretations and allows one to explain the general behavior of a model by analyzing the
prediction of several samples [54]. Each feature value of a sample is treated as a player in a
coalitional game, (i.e., a game where several players cooperate towards the same objective).
In this case, the objective is the prediction for a particular sample. In this way, SHAP
divides the final payout (the output of the model) between all players (the feature values of
the instance to be analyzed). The Shapley value is computed as the mean of the marginal
contribution of the player in all the possible coalitions.

3. Results

In this work, the experiments are divided into two main parts. In the first part, we
analyze the accuracy of glucose measurements obtained from the devices Eversense and
FSL against the capillary measurements obtained by FSLCstrip during the period of PA and
NDA. The comparison was carried out considering (1) three glucose ranges (hypoglycemia,
euglycemia, and hyperglycemia); and (2) four time intervals throughout the day (Mint,
Aint, Eint, and Nint). In the second part, several ML-based models are used to identify
whether a patient has performed PA or not using statistical information extracted from
glucose measurements.
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3.1. Analysis of the Impact of Physical Activity on CGM Devices’ Performance
3.1.1. Analysis of the Impact of Physical Activity on CGM Devices’ Performance in
Different Glucose Ranges

Figure 2 shows the deviation metrics MAD and MARD for both Eversense and FSL de-
vices by considering different glucose ranges (hypoglycemia, euglycemia, hyperglycemia)
and for PA and NDA, respectively. Both MAD and MARD were calculated between pairs
of glucose values recorded for each CGM device and capillary glucose measurements
(FSLCstrip). In general, both devices showed significantly higher deviations in PA in all
glucose ranges. However, Eversense in the hypoglycemic range seems to perform better
in PA than NDA, showing smaller MAD and MARD values. For both Eversense and FSL,
comparing the glucose ranges, MAD values are the highest in the hyperglycemic range,
and for MARD, it occurs for hypoglycemia. It is worth noting that standard deviations
(represented by a line in the center of bars) are also high in hyperglycemia (MAD) and
hypoglycemia (MARD). This suggested that CGM devices are more sensitive to these
glucose ranges, with less accurate glucose measurements compared to FSLCstrip.
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Figure 2. MAD and MARD values during PA and NDA for different glycemic ranges for (a,b) Eversense
against FSLCstrip and (c,d) FSL against FSLCstrip. MAD and MARD were calculated based on the
differences between glucose values recorded by the CGM device and FSLCstrip for PA and NDA,
respectively. The comparison highlights whether there are significant differences between the PA and
NDA conditions across glucose ranges. * indicates statistically significant differences in the impact of
physical activity according to the two-proportion z-test (with level of significance of 0.05).

To evaluate the quality of the glucose measures, we also studied the CEG. The higher
concentration of points placed in zone A of the CEG plot, the greater performance of CGM
devices. Figure 3 shows the proportion of values in zone A of CEG for both CGM devices
during NDA and PA when considering hypoglycemic, euglycemic, and hyperglycemic
ranges. In Figure 3a, it is observed that Eversense presents a high proportion of measures
in zone A (88.5%) during PA when considering the hypoglycemic range. However, the
proportions of points in zone A for the PA period are lower than the NDA in the other
ranges: 66.4% versus 79.6% (euglycemic range) and 75.9% versus 86.2% (hyperglycemic
range). According to the two-proportion test, all differences are statistically significant
(represented by *) except for the hypoglycemic range. For FSL (see Figure 3b), the scenario is
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different. The proportion of points in zone A for NDA is greater than those obtained in the
PA period in all glucose ranges. The differences in proportions are statistically significant in
all cases by considering the two-proportion test. Note that the highest proportion in zone
A occurs in the hyperglycemic range (92%). In Eversense, the differences in proportions
between PA and NDA are smaller compared to values of FSL. This suggests that glucose
measurements from Eversense are more accurate, performing better than FSL.
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Figure 3. Proportion of glucose concentrations in zone A of CEG by considering different glucose
ranges (hypoglycemia, euglycemia, hyperglycemia) and PA and NDA for (a) Eversense and (b) FSL.
* indicates statistically significant differences in the impact of physical activity (PA versus NDA)
according to the two-proportion z-test (with level of significance of 0.05).

3.1.2. Analysis of the Impact of Physical Activity on CGM Devices’ Performance at
Different Time Intervals Throughout the Day

To study the performance of CGM devices (Eversense and FSL) during the PA and
NDA in different time intervals (Mint, Aint, Eint, Nint), the deviation metrics and the CEG
were considered. Figure 4 shows the MAD and MARD values for different time intervals
by distinguishing between the periods PA and NDA. In Figure 4a,b, it is observed that there
exist differences between PA and NDA for Eversense, with greater MAD and MARD values
during the PA period, except for Nint. The MAD and MARD values differ significantly
during Mint and Aint for both Eversense and FSL in PA and NDA (see Figure 4a–d). FSL
also presented significant differences in the case of Eint for both MAD and MARD (see
Figure 4a–d), while Eversense only presented differences during evening for MARD.

The CEG was also analyzed for every time interval independently. Figure 5 depicts the
proportion of glucose concentration values falling in zone A for each glucose monitoring
device and period (PA in blue and NDA in orange). For Eversense (see Figure 5a), the
proportion of points in zone A is greater for the NDA period in all time intervals during
the day. The two-proportion test suggests that these differences are statistically significant
in all cases except for Nint. In FSL (Figure 5b), the proportions of points in zone A in the
NDA are greater than values associated with the PA period in Mint, Aint, and Eint, being
statistically significant for Mint and Aint (following the two-proportion test results). Note
that the highest values are obtained in the NDA, for Eversense, during Mint (86.0%) and
Nint (84.1%), while in FSL, it occurs in the intervals Eint (84.5%) and Aint (85.7%).

3.2. Prediction of Physical Activity Through Machine Learning Models

In this subsection, we present the results obtained using several ML-based models for
identifying when a T1D patient has performed high-intensity PA. In particular, DT, KNN,
LR, MLP, RF, SVM, TabPFN, and XGB were considered in this study. The source code for
the reproducibility of results is available at https://github.com/cdchushig/exercise-cgm
(accessed on 21 October 2024).

Before applying ML models, information from glucose time series was extracted using
a feature extraction approach based on statistics and the number of hypoglycemic and
hyperglycemic episodes. As stated, glucose measurements were represented by time series;
however, since these data were scarce and irregularly sampled, we performed a feature
extraction process based on statistics. In particular, four statistics were used, including

https://github.com/cdchushig/exercise-cgm
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sum, median, variance, and entropy. We also considered the number of hypoglycemic and
hyperglycemic episodes and the total number of adverse events (sum of hypoglycemic and
hyperglycemic episodes). A brief description of these features is shown in Table 1.
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Figure 4. MAD and MARD values during PA and NDA for different time intervals for (a,b) Eversense
against FSLCstrip and (c,d) FSL against FSLCstrip. MAD and MARD were calculated based on the
differences between glucose values recorded by the CGM device and FSLCstrip for PA and NDA,
respectively. The comparison highlights whether there are significant differences between the PA and
NDA conditions across glucose ranges. * indicates statistically significant differences in the impact of
physical activity according to the two-proportion z-test (with level of significance of 0.05).
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Figure 5. Proportion of glucose concentrations in zone A of CEG by considering different time
intervals (Mint, Aint, Eint, Nint) and the periods PA and NDA for (a) Eversense and (b) FSL. * indicates
statistically significant differences in the impact of physical activity (PA versus NDA) according to
the two-proportion test (with level of significance of 0.05).
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Table 1. Description of the variables extracted from glucose measurements.

Feature Identifier Description

Sum Sum Sum of the observed glucose concentration values.

Median Median Value lying at the midpoint of the frequency distribution of
observed glucose concentration values.

Variance Var Measure of dispersion of the observed glucose
concentration values.

Entropy Entropy Measure of amount of uncertainty within the observed
glucose values.

Hyperglycemic events Hyper Total number of observed glucose concentration values
within the hyperglycemic range.

Hypoglycemic events Hypo Total number of observed glucose concentrations values
within the hypoglycemic range.

Adverse events Adverse Sum of hypoglycemic and hyperglycemic events.

The extraction process results in a total of 35 features, 7 features for each time interval
(Mint, Aint, Eint, Nint), and 7 considering glucose data during all day. We also conducted
a correlation analysis using the Pearson correlation coefficient (PCC), aiming to discard
those features highly correlated (with a PCC over 0.7). As a result, 15 features were kept
for FSLCstrip, 16 for Eversense, and 15 for FSL. Then, we used several filter, wrapper,
and embedded FS methods to select the most important features. Given that several
FS methods were considered, a voting strategy was conducted for selecting the most
representative features, keeping those features chosen by at least three of the eight FS
methods. Figure 6 shows the voting results of the eight FS methods, which indicates the
frequency of selection of each feature for different BG monitoring devices studied in the
paper. A total of 11 features were selected for FSLCstrip (F_Adverse, N_Median, N_Sum,
N_Var, E_Median, A_Var, E_Hyper, N_Hypo, M_Entropy, M_Hypo, E_Hypo), 14 for
Eversense (F_Adverse, N_Median, N_Var, N_Adverse, M_Var, M_Entropy, E_SumValues,
E_Var, F_SumValues, A_Var, M_Hypo, E_Hypo, M_Median, E_Median), and 10 for FSL
(M_SumValues, A_Var, F_Adverse, M_Var, N_Var, A_Hypo, N_Hyper, N_Median, E_Hypo,
N_Entropy). As shown in Figure 6, F_Adverse, N_Median, N_Var, A_Var, and E_Hypo
are the features most voted for. F_Adverse indicates the presence of a glycemic event by
considering all glucose values, while E_hypo denotes the episodes of hypoglycemia during
the evening (Eint). N_Median, N_Var, and A_Var are statistics from the time series that
point out the variance and median of glucose values in the interval Nint and Aint.
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Figure 6. Voting results of eight FS methods by indicating the frequency of selection of each feature
for each BG monitoring device.

Data extracted from time series were split into training and test subsets, with 70%
and 30% of samples, respectively. The train subset was used for training the ML methods,
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whereas the test subset was only used to assess the performance of the trained models. Both
subsets were balanced to ensure the same number of samples for each class (PA and NDA).
To avoid bias, we used five independent partitions, each of which has a training and test
subset. To find the best hyperparameters, we considered a leave-one-out cross-validation
approach, a special case of k-fold cross-validation, in which the number of folds equals the
number of samples. This method is adopted to obtain reliable predictive results when the
number of samples of a dataset is scarce. Several hyperparameters were explored for the
supervised models, which are shown in Table 2.

Table 2. Hyperparameters explored for the supervised ML-based models DT, KNN, LR, MLP, RF,
SVM, TabPFN, and XGB.

Model Hyperparameter Values/Options

DT maximum depth [3, 20]
split criterion Gini, entropy
minimum samples per split [2, 8]

KNN number of neighbours [1, 20]

LR penalty L2
C C = {0.01, 0.001, 0.1, 1, 10}

MLP hidden layer sizes {(num_features, 4), (num_features, 3), (num_features, )}
activation function Tanh, RELU
optimizer SGD, Adam
alpha {0.0001, 0.05}
learning rate constant, adaptive

RF # estimators {10, 20, 30, 40}
maximum depth [1, 16]

SVM kernel RBF
γ {0.01, 0.001, 0.0001, 0.00001}
C {0.01, 0.001, 0.0001, 0.00001}

TabPFN number of ensemble {16, 32}
batch size {20, 30}

XGB # estimators {10, 20, 30, 40}
maximum depth [1, 16]
learning rate {0.1, 0.01, 0.001}
subsample {0.5, 0.7, 1.0}

To study the impact of PA during the day, we consider the four time intervals defined
in the previous section (Mint, Aint, Eint, and Nint). In this way, the features mentioned
previously are extracted independently for the whole glucose values Fint as well as for each
of the four time intervals. In the remainder of this paper, the feature names will include a
prefix to denote what time interval each mentioned feature represents. For instance, A_Var
refers to the variance in Aint. By summarizing, the extraction process results in a total of
35 features (7 features for each time interval and 7 considering the full day).

The classification results using the three glucose monitoring devices are presented
in Table 3, showing the mean and standard deviation obtained over five test partitions.
As shown, the highest predictive results are achieved using the ML models KNN, LR,
SVM, TabPFN, and XGB, reaching accuracy mean values over 0.88. The best predictive
results are reached using Eversense, with LR and XGB obtaining an F1-score of 0.91 ± 0.05
and 0.92 ± 0.04, respectively. Although it was seen in the previous section that the devi-
ation metrics by Eversense and FSL are higher in PA than NDA, these differences could
potentially aid in the identification of high-intensity PA.
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Table 3. Mean and standard deviation of classification metrics when considering test subset partitions
and the selected features for FSLCstrip, Eversense, and FSL. The best results for each figure of merit
are in bold.

ML Model Glucose
Monitoring Device Accuracy Sensitivity Specificity F1-Score

DT FSLCstrip 0.74 ± 0.11 0.73 ± 0.20 0.76 ± 0.26 0.73 ± 0.12
DT Eversense 0.73 ± 0.16 0.70 ± 0.25 0.76 ± 0.16 0.70 ± 0.20
DT FSL 0.65 ± 0.17 0.58 ± 0.17 0.73 ± 0.31 0.63 ± 0.16

KNN FSLCstrip 0.87 ± 0.05 0.87 ± 0.12 0.88 ± 0.16 0.87 ± 0.05
KNN Eversense 0.90 ± 0.08 0.93 ± 0.13 0.88 ± 0.16 0.91 ± 0.08
KNN FSL 0.85 ± 0.07 0.87 ± 0.06 0.82 ± 0.16 0.85 ± 0.06

LR FSLCstrip 0.83 ± 0.06 0.81 ± 0.11 0.85 ± 0.22 0.83 ± 0.04
LR Eversense 0.91 ± 0.06 0.90 ± 0.07 0.91 ± 0.17 0.91 ± 0.05
LR FSL 0.82 ± 0.16 0.82 ± 0.27 0.82 ± 0.22 0.80 ± 0.21

MLP FSLCstrip 0.83 ± 0.11 0.81 ± 0.11 0.85 ± 0.22 0.83 ± 0.09
MLP Eversense 0.86 ± 0.10 0.85 ± 0.15 0.88 ± 0.16 0.86 ± 0.10
MLP FSL 0.80 ± 0.12 0.76 ± 0.19 0.85 ± 0.22 0.79 ± 0.13

RF FSLCstrip 0.83 ± 0.12 0.76 ± 0.21 0.91 ± 0.06 0.80 ± 0.15
RF Eversense 0.86 ± 0.09 0.82 ± 0.20 0.91 ± 0.11 0.84 ± 0.13
RF FSL 0.78 ± 0.14 0.70 ± 0.25 0.85 ± 0.22 0.74 ± 0.19

SVM FSLCstrip 0.83 ± 0.06 0.79 ± 0.19 0.88 ± 0.16 0.82 ± 0.08
SVM Eversense 0.88 ± 0.08 0.85 ± 0.15 0.91 ± 0.17 0.87 ± 0.09
SVM FSL 0.82 ± 0.12 0.79 ± 0.19 0.85 ± 0.22 0.81 ± 0.13

TabPFN FSLCstrip 0.82 ± 0.06 0.81 ± 0.14 0.82 ± 0.20 0.82 ± 0.05
TabPFN Eversense 0.91 ± 0.10 0.91 ± 0.17 0.91 ± 0.17 0.91 ± 0.11
TabPFN FSL 0.77 ± 0.11 0.73 ± 0.24 0.82 ± 0.20 0.74 ± 0.16

XGB FSLCstrip 0.79 ± 0.07 0.76 ± 0.19 0.82 ± 0.20 0.77 ± 0.08
XGB Eversense 0.92 ± 0.04 0.90 ± 0.07 0.93 ± 0.07 0.92 ± 0.04
XGB FSL 0.77 ± 0.05 0.70 ± 0.20 0.84 ± 0.13 0.74 ± 0.09

With the goal of providing interpretability to ML-based models, SHAP was used
alongside the models built with the selected features obtained by the FS methods. The
SHAP analysis is commonly used for gaining interpretability of the importance value
assigned to each feature. This leads to identifying how they contribute to the prediction
model. Figure 7 shows the SHAP bar plots associated with the ML models with best
predictive results for each device (i.e., SVM for FSLCstrip, and LR for both Eversense and
FSL). These plots show the order of relevance of the features for the models’ predictions
in decreasing order (vertical axis). It is remarkable to see that the total number of adverse
events (both hypoglycemic and hyperglycemic) during the day (F_Adverse) has the most
important influence on all models’ decisions, receiving the maximum importance value in
all cases. The rest of the features appear to have very different impacts on every model.

Since the Eversense device provided the best predictive results, we used glucose
measures from this device and conducted an analysis at different times of the day. The
ML-based models were trained using the most relevant features associated with each time
interval during the day (Mint, Aint, Eint, Nint) and Fint. Following a voting FS strategy, we
selected the most relevant features for each time interval:

• Mint: M_Sum, M_Var, M_Adverse, M_Hypo, and M_Median;
• Aint: A_Var, A_Entropy, A_Hyper, A_Hypo and A_Median;
• Eint: E_Entropy, E_Median, E_Hyper, E_Var and E_Hypo;
• Nint: N_Hypo, N_Hyper, N_Var, N_Median and N_Entropy;
• Fint: F_Adverse, N_Median, N_SumValues, N_Var, E_Median, A_Var, E_Hyper,

N_Hypo, M_Entropy, M_Hypo, E_Hypo.
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(a) (b)

(c)

Figure 7. SHAP bar plots showing the importance of each feature for predicting PA and NDA, using
(a) FSLCstrip and SVM; (b) Eversense and LR; and (c) FSL and LR.

Table 4 shows the mean and standard deviation of the classification metrics for the
five test subset partitions by using only the features relative to each 6-h time interval.
As shown, there is a substantial decrease in the predictive performance compared to the
results obtained considering features from all time periods (see values in Table 3). This
is remarkable in the cases of the afternoon, evening, and night (Aint, Eint, Nint), where
accuracy values are the lowest, in some cases below 0.52, indicating that the models
randomly assign classes to the samples. Furthermore, the better time interval to predict if
an individual performed high-intensity PA was (Mint).

Table 4. Mean and standard deviation of the figures of merit were calculated across 5 test partitions,
considering Eversense measurements at different time intervals. The best results for each figure of
merit are highlighted in bold.

ML Method Interval Accuracy Sensitivity Specificity F1-Score

DT

Fint 0.87 ± 0.07 0.90 ± 0.07 0.84 ± 0.09 0.88 ± 0.07
Mint 0.79 ± 0.13 0.73 ± 0.24 0.84 ± 0.15 0.75 ± 0.18
Aint 0.52 ± 0.07 0.59 ± 0.14 0.45 ± 0.15 0.55 ± 0.09
Eint 0.59 ± 0.02 0.58 ± 0.13 0.59 ± 0.14 0.57 ± 0.05
Nint 0.62 ± 0.07 0.45 ± 0.19 0.79 ± 0.11 0.51 ± 0.16
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Table 4. Cont.

ML Method Interval Accuracy Sensitivity Specificity F1-Score

KNN

Fint 0.80 ± 0.08 0.85 ± 0.15 0.76 ± 0.10 0.80 ± 0.09
Mint 0.75 ± 0.15 0.70 ± 0.19 0.79 ± 0.26 0.73 ± 0.14
Aint 0.63 ± 0.12 0.63 ± 0.11 0.63 ± 0.18 0.63 ± 0.11
Eint 0.67 ± 0.13 0.82 ± 0.13 0.52 ± 0.14 0.71 ± 0.11
Nint 0.65 ± 0.13 0.57 ± 0.22 0.73 ± 0.13 0.60 ± 0.18

LR

Fint 0.88 ± 0.05 0.88 ± 0.10 0.88 ± 0.10 0.87 ± 0.05
Mint 0.73 ± 0.11 0.61 ± 0.24 0.85 ± 0.15 0.67 ± 0.17
Aint 0.58 ± 0.05 0.60 ± 0.14 0.56 ± 0.19 0.59 ± 0.05
Eint 0.65 ± 0.08 0.72 ± 0.10 0.58 ± 0.22 0.67 ± 0.05
Nint 0.65 ± 0.07 0.60 ± 0.24 0.70 ± 0.15 0.60 ± 0.15

MLP

Fint 0.85 ± 0.10 0.85 ± 0.22 0.85 ± 0.09 0.83 ± 0.14
Mint 0.63 ± 0.03 0.48 ± 0.17 0.79 ± 0.17 0.55 ± 0.09
Aint 0.57 ± 0.06 0.69 ± 0.08 0.44 ± 0.18 0.62 ± 0.03
Eint 0.65 ± 0.07 0.72 ± 0.10 0.58 ± 0.15 0.67 ± 0.06
Nint 0.62 ± 0.03 0.50 ± 0.20 0.73 ± 0.16 0.54 ± 0.14

RF

Fint 0.90 ± 0.05 0.84 ± 0.10 0.97 ± 0.05 0.90 ± 0.06
Mint 0.74 ± 0.08 0.64 ± 0.18 0.85 ± 0.15 0.70 ± 0.14
Aint 0.54 ± 0.03 0.66 ± 0.11 0.42 ± 0.10 0.59 ± 0.05
Eint 0.64 ± 0.09 0.60 ± 0.10 0.67 ± 0.20 0.62 ± 0.07
Nint 0.63 ± 0.10 0.57 ± 0.19 0.70 ± 0.11 0.59 ± 0.14

SVM

Fint 0.82 ± 0.06 0.79 ± 0.15 0.85 ± 0.09 0.80 ± 0.08
Mint 0.75 ± 0.10 0.64 ± 0.24 0.85 ± 0.15 0.69 ± 0.17
Aint 0.60 ± 0.03 0.60 ± 0.14 0.59 ± 0.19 0.59 ± 0.04
Eint 0.65 ± 0.08 0.79 ± 0.06 0.51 ± 0.20 0.69 ± 0.04
Nint 0.69 ± 0.05 0.60 ± 0.11 0.79 ± 0.11 0.66 ± 0.08

TabPFN

Fint 0.91 ± 0.08 0.91 ± 0.11 0.91 ± 0.11 0.91 ± 0.08
Mint 0.73 ± 0.11 0.58 ± 0.19 0.88 ± 0.16 0.67 ± 0.16
Aint 0.57 ± 0.04 0.60 ± 0.16 0.53 ± 0.17 0.57 ± 0.09
Eint 0.62 ± 0.04 0.69 ± 0.12 0.54 ± 0.15 0.64 ± 0.04
Nint 0.61 ± 0.05 0.69 ± 0.18 0.54 ± 0.16 0.63 ± 0.10

XGB

Fint 0.92 ± 0.04 0.90 ± 0.07 0.93 ± 0.07 0.92 ± 0.04
Mint 0.77 ± 0.07 0.72 ± 0.10 0.82 ± 0.13 0.76 ± 0.08
Aint 0.66 ± 0.12 0.74 ± 0.22 0.57 ± 0.16 0.67 ± 0.15
Eint 0.66 ± 0.06 0.58 ± 0.15 0.75 ± 0.14 0.62 ± 0.10
Nint 0.63 ± 0.03 0.57 ± 0.11 0.70 ± 0.17 0.60 ± 0.03

4. Discussion

In this work, we studied the performance of CGM devices (Eversense and FSL) compared
to the capillary glucose device (FSLCstrip) during periods of high-intensity PA and NDA, when
considering (i) three different glucose ranges (hypoglycemia, euglycemia, and hyperglycemia),
and (ii) four time periods throughout the day (morning, afternoon, evening, and night).

CGM devices have increased their popularity for tracking and controlling glycemic
levels because they are less invasive compared to capillary BG measurements that require
frequent punctures for obtaining blood samples. Despite these characteristics, in several
studies CGM devices have been shown to be less accurate than traditional capillary glucose
devices. It is for this reason that the evaluation of CGM performance against gold standard
measures becomes crucial to guarantee reliability and confidence in their use, and more
particularly during PA.

The comparison of the performance of Eversense and FSL against FSLCstrip was performed
following two different approaches. Firstly, we analyzed MAD and MARD with respect to the
FSLCStrip. Secondly, we visually analyzed how glucose concentrations values are distributed
in different zones of CEG plots. We can conclude that these CGM devices present a clinically
meaningful deviation compared to FSLCstrip based on MAD/MARD and on the proportion of
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values in zone A, both providing a worse performance whenever the subjects perform PA. This is
an important insight to consider, since diabetic patients need strict control of their glucose levels
and performing strenuous PA can lead to less accurate glucose measurements when using such
type of sensors. Also, when comparing the values of both periods (NDA and PA), it was observed
that the distributions of glucose values were significantly different for Eversense and FSL (both in
the total and the hyperglycemic ranges of glucose), whereas this was not the case for FSLCstrip.
These experimental results prove that FSL and Eversense are less accurate for measuring glucose
under high-intensity PA scenarios which is in line with previous studies. Moreover, the fact that
the differences appear in the hyperglycemic range is remarkable since it implies that the sensors
work inappropriately when trying to detect glycemic events. This can be critical for T1D subjects
because prolonged periods of hyperglycemia are one of the underlying causes of complications
related to diabetes. The rapid change in glucose levels during PA continues to be a challenging
situation and it is also expected to affect the performance of sensor systems.

To extend this work, we studied glucose levels during four different time intervals
(Mint, Aint, Eint, Nint) throughout the day. No significant differences were observed among
the distributions of each time interval in the NDA period, with stable glucose concentration
values during the day. The opposite occurred during the PA period, obtaining significant
differences between morning and afternoon, as well as between morning and evening.
In a similar way to this previous analysis, the frequency of onset of glucose outside the
target range (between 70 and 180 mg/dL) was studied, in particular for hypoglycemic and
hyperglycemic episodes. Hypoglycemic events appeared to be stable at both periods (PA
and NDA). However, hyperglycemic events vary significantly at different time intervals
during the PA period compared to the NDA period. This makes sense considering that it
is known that performing exercise diminishes the glucose storage of the body, therefore
avoiding hyperglycemia. Although CGM devices play an important role in the management
of T1D, we confirmed (extending the analysis of the study [32]) that accuracy of these
devices is reduced during PA at different time intervals and glucose ranges.

The literature has shown that CGM devices support the reduction in hypoglycemia
and hyperglycemia, improving the management of T1D. However, most of these studies
were not conducted during high-intensity activities. In a similar way to this previous
analysis, the frequency of onset of glucose outside the target range, in particular hypo-
glycemic/hyperglycemic episodes, was studied at different time intervals. Hypoglycemic
events appeared to be stable at both periods (PA and NDA). However, hyperglycemic
events vary significantly at different time intervals during the PA period compared to the
NDA period. This makes sense considering that it is known that performing exercise dimin-
ishes the glucose storage of the body, therefore avoiding hyperglycemia. Although CGM
devices play an important role in the management of T1D, we confirmed that accuracy of
these devices are reduced during PA. The reviewed literature has shown that CGM devices
support reducing hypoglycemia and hyperglycemia. However, most of these studies were
not conducted during high-intensity activities.

The use of ML models to determine when an individual has performed PA yielded
promising results with an accuracy value of 0.93. The predictive models developed us-
ing supervised ML techniques demonstrate high accuracy in distinguishing between PA
and NDA, with Eversense showing the best performance. The SHAP analysis provides
insights into the importance of different features in the predictive models. It highlights
the significant influence of the total number of adverse events (F_Adverse) on the model’s
predictions, suggesting that the occurrence of glycemic events is a key indicator of PA. This
finding is consistent across all devices studied. These predictive results can be used to
develop an individualized data-driven classifier for each patient that categorizes glucose
profiles based on the time interval during the day and according to if a patient performs PA.

Despite the extensive comparative analysis between Eversense and FSL devices against
FSLCstrip, it is important to address the limitations of this study. One of the major lim-
itations is related to the dataset size, where only glucose measurements from 23 T1D
participants were considered. We acknowledge that the small sample size may affect
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the generalization of our results since the glycemic variability of individuals may impact
both the statistical analyses and extracted features used in the classification of PA. This
could limit the broader applicability of our findings to the larger T1D population and
other scenarios with PA since our work has been evaluated with glucose measurements
in high-intensity PA. In this line, we also have to mention the potential bias in participant
selection, and how the specific demographic, clinical, and glycemic characteristics of the
participants might limit the extent to which these results can be applied to other studies
or cohorts. However, it is worth noting that studies that collect data from individuals
performing high-intensity PA are scarce, and our study is one of the few that has conducted
an analysis on this, and more particularly using data from mountain biking.

To overcome these limitations, future work will focus on expanding the analysis by
incorporating larger and more diverse datasets related to glucose, thereby enhancing the
reliability of the findings. Additionally, to mitigate potential selection bias, future studies
will include not only high-intensity PA but also various forms of aerobic and anaerobic
exercises. This approach will allow for a comprehensive evaluation of glucose monitoring
devices across a broader range of PA scenarios. Another valuable direction for future
research involves the evaluation of other measures to capture the glycemic dynamics, and
fusing them with those proposed in this study. Finally, to identify the most relevant features
for classification, we combined several types of FS methods with reasonable results, but
recent studies have shown that ensemble learning techniques might improve the FS, and
this is a potential line of research for extending our study.

5. Conclusions

Our study demonstrated that CGM devices, particularly Eversense, can effectively
monitor glucose levels during high-intensity PA, albeit with some limitations in accuracy.
Our findings revealed significant differences in glucose measurements between these peri-
ods, with a noticeable impact on the performance of CGM devices. The results indicate that
both Eversense and FSL show higher deviations in glucose values during PA, particularly
in hyperglycemic and hypoglycemic ranges. This suggests that strenuous PA affects the
accuracy of CGM devices, making them less reliable compared to capillary measurements.
Under scenarios with high-intensity PA, the use of CGM devices should be cautious since
glucose measures could not be sufficiently accurate. In addition, we developed an auto-
mated approach using ML techniques yielding promising results and achieving an accuracy
value of 0.93. This approach could help to reduce the workload of clinicians by tracking PA
in T1D patients and controlling medical recommendations. The findings underscore the
importance of considering the impact of PA on glucose monitoring and the potential of ML
methods to improve diabetes management.
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Figure A1. Box plots of glucose concentrations values considering the periods of PA and NDA and
the devices (a) FSLCstrip; (b) FSL; and (c) Eversense.
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Figure A2. Temporal evolution of glucose concentrations values using (a,b) FSLCstrip; (c,d) FSL; and
(e,f) Eversense. Figures in the first column correspond to the PA period, whereas those in the second
column correspond to NDA.
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