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ABSTRACT Noncommunicable diseases (NCDs) are the leading cause of morbidity and mortality
worldwide. Cardiovascular diseases (CVDs) and diabetes are the most prevalent NCDs, causing 1.9 and
1.5 million deaths yearly. Individuals diagnosed with type 1 diabetes (T1D) are at high risk of developing
CVDs. Machine learning (ML) models have provided outstanding results in different domains, including
healthcare, allowing to obtain models with high predictive performance. The aim of this study was to develop
an interpretable data-driven approach to predict the 10-year CVD risk for T1D older individuals, aiming to
provide both reasonable predictive performance and the identification of risk factors associated with CVDs.
Data from T1D individuals at the Steno Diabetes Center Copenhagen were used. Different ML-based models
were considered, includingKNN, decision tree, random forest, andmultilayer perceptron (MLP). To enhance
the predictive performance of ML models, the conditional tabular generative adversarial network (CTGAN)
was used to create synthetic data and increase the size of the training data. Several filter and wrapper feature
selection (FS) techniques were considered for identifying the most relevant features involved in CVD risk
and enhancing the performance of the ML-based models used. To gain interpretability on predictive models,
we used the post-hoc methods: SHAP and accumulated local effects. The experimental results showed a
great performance of FS and ML-based models for predicting CVD risk. In particular, the MLP obtained
the best results, with a mean absolute error of 0.0088 and mean relative absolute error of 0.0817. Regarding
risk factors, age, Hba1c, and albuminuria were identified as crucial in CVD risk prediction, which is in line
with recent clinical evidence. Our study contributes to identifying CVD risk and associated risk factors in a
data-driven manner, helping to make early interventions and adequate treatments to prevent CVDs.

INDEX TERMS Cardiovascular risk prediction, type 1 diabetes, machine learning, interpretable methods,
feature selection, generative adversarial networks, accumulated local effects, post-hoc interpretabil-
ity, CTGAN.
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I. INTRODUCTION
Noncommunicable diseases (NCDs) have become a global
health and economic issue in modern society. Recent reports
from the World Health Organization identified NCDs as the
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leading cause of disability and morbidity worldwide [1].
Cardiovascular diseases (CVDs) and diabetes are among the
most prevalent NCDs, causing 1.9 and 1.5 million deaths per
year, respectively [2]. According to the International Diabetes
Federation [3] approximately 700 million individuals will
develop diabetes by 2045 [4]. Previous studies have shown
that the risk of developing cardiovascular events is higher in
prediabetic cohorts than in cohorts of healthy individuals [5].
Furthermore, epidemiological studies have shown that the
risk of developing CVD is higher in individuals with
type 1 diabetes (T1D) [6], [7]. Although T1D is frequently
diagnosed in children and youth, many cases have been
reported in adulthood [8]. People with NCDs significantly
increase the cost and demand for healthcare services owing
to multiple hospitalizations, adverse events, and frequent
visits to primary and specialized care [4]. Early identification
of CVD cases and effective interventions are crucial for
reducing both health and economic burden [1], [9].

Risk calculators have supported public health stakeholders
in the identification of individuals at high risk of CVD,
fostering early clinical interventions and reducing acute
events and associated mortality risk [10]. Several clinical
guidelines recommend the use of risk models as the first
step in decision-making, primary prevention and the design
of risk-reducing strategies [10], [11]. Over the last few
years, various CVD risk calculators have been developed,
including the Framingham risk score [12], the systematic
coronary risk evaluation [13], the Reynolds risk score [14],
the PROCAM calculator [15] among others [16], [17].
Regarding CVD risk prediction models for diabetic cohorts,
three approaches have been extensively employed [18]:
(i) considering diabetes as a CVD risk factor and treating
diabetic patients as high-risk patients; (ii) applying risk
models developed using cohorts of healthy individuals to
diabetic populations; and (ii) developing diabetes-specific
risk prediction models. Of the 45 CVD risk prediction models
identified for patients with diabetes [19], 33 corresponded
to the second approach, and only 12 were developed using
data from cohorts diagnosed with diabetes [20]. Additionally,
the first and second approaches are not robust because the
pathogenesis of CVD in diabetic patients is multifactorial and
presents significant heterogeneity owing to the presence of
other comorbidities [21]. While the high prevalence of CVD
among people with type 2 diabetes (T2D) has been widely
studied and recognized over the past several decades, the link
between T1D and CVD has been less studied.

Several CVD risk models have been developed for T2D
patients, but a few risk calculators have been created and
validated using data from T1D individuals [22]. In the
literature, some studies have proposed risk engines focused
on T1D, such as the Swedish T1D risk score (SWT1RS) [23],
the Scottish T1D risk score (SCT1RE) [24] and the Danish
Steno T1 Risk Engine (ST1RE) [22]. The SWT1RS con-
sidered eight features: diabetes mellitus (DM) duration, age
at onset of T1D, log ratio of total cholesterol, high-density

lipoprotein (HDL), glycosylated hemoglobin (HbA1c), sys-
tolic blood pressure (SBP), smoking, macroalbuminuria, and
if the patient had previous CVD. The SCT1RS used nine
features: age, sex, HbA1c, EGFR, HDL, DM duration, smok-
ing status, antihypertensive treatment, and statin therapy. The
ST1RE considered age, sex, diabetes duration, SBP, low-
density lipoprotein (LDL), HbA1c, albuminuria, estimated
glomerular filtration rate (EGFR), and lifestyle habits such
as smoking and exercise. In this study, ST1RE was used to
obtain the CVD risk for diabetic cohorts, since it considers
different types of albuminuria, lifestyle and clinical features.

In the clinical setting, several studies have explored the use
of machine learning (ML) models in a range of applications
such as disease prediction, identification of risk factors,
prediction of adverse events among others [25], [26], [27],
[28]. ML field has not been only limited to the development
of predictive models, and have been successfully used to
identify disease risk factors [29]. In critical domains such as
healthcare, understanding how models reach predictions is of
paramount importance for the implementation and adoption
of ML-based models in clinical practice [30]. The goal is
not only to create models with high predictive performance
but also to obtain transparent and interpretable models [31].
Recently, methods that provide post-hoc explanations of
model predictions, such as Shapley additive explanations
(SHAP) [32] and accumulated local effects (ALE) [33],
have received considerable attention [30], [31]. Despite the
great benefits of ML, in several applications and domains,
the generalization and performance of models are limited
by the number of samples in the datasets. To address
this, several resampling approaches have been proposed for
generating synthetic data and increasing the amount of data
used for model training. Among them, generative adversarial
networks (GANs) have provided remarkable results for
generating high-quality data in computer vision [34]. In this
study, the GAN-basedmodel named conditional tabular GAN
(CTGAN) [35], which has shown excellent performance in
previous studies [36], [37], has been used to create synthetic
tabular data that help to enhance predictive results.

In this study, we developed an interpretable data-driven
approach to predict the 10-year CVD risk in T1D older
individuals, aiming to provide both reasonable predictive
performance and interpretability in the identification of
risk factors associated with CVDs. To conduct this study,
we used data collected from patients diagnosed with T1D
at the Steno Diabetes Center Copenhagen [22]. Different
ML-based models were considered, including the K-nearest
neighbors (KNN), decision tree (DT), random forest (RF),
and multilayer perceptron (MLP). To enhance the predictive
performance of these models, the oversampling model
CTGAN was used to create synthetic data and combine them
with real patient data. Several filter and wrapper feature
selection (FS) techniques were considered for identifying
most relevant features involved in the development of
CVD, and thus enhancing the performance of ML models.
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To identify the most relevant features and gain interpretability
on ML-based models trained for CVD risk prediction,
we used the post-hoc methods: SHAP [32] and ALE [33].
To the best of our knowledge, this paper is one of the first that
explores GAN-based models for tabular data augmentation
in combination with filter and wrapper FS methods for
enhancing CVD risk prediction in T1D older individuals.

The rest of the paper is organized as follows. Section II
describes the dataset and preprocessing stage. Section III
presents the methods employed in this work.
Section IV shows the experimental setup, the results achieved
by ML models for predicting CVD risk, and the analysis
of CVD risk factors identified through FS and post-
hoc methods. Finally, Section V and Section VI presents
discussion and conclusions, respectively.

II. DATASET DESCRIPTION AND PREPROCESSING
This section presents the dataset used and the preprocessing
stage. In this study, we employed data collected from 1,000
Danish adults diagnosed with T1D and treated at the Steno
Diabetes Center Copenhagen [22]. Patients with previous
CVD events were excluded, resulting in a dataset of 677 indi-
viduals. A total of 10 features were considered, including
age, sex, smoking, exercise, DM duration (in years), SBP
(in mmHg), LDL (in mmol/l), Hba1c (in mmol/mol), EGFR
(in ml/min/1.72m2), and albuminuria. All features were
continuous except for the binary features of sex, smoking,
and exercise, and the categorical feature albuminuria. Three
categories of albuminuria, differing in the urinary albumin-
to-creatinine ratio, were available: normoalbuminuria
(<30 mg/g), microalbuminuria (30-299 mg/g), and macroal-
buminuria (≥ 300 mg/g). The one-hot encoding [38] was
used for transforming the original feature (albuminuria)
into three new binary features named: normoalbuminuria,
microalbuminuria, and macroalbuminuria. Smoking was
coded as ’0’ (absence) and ’1’ (presence). Regularly exercise
was coded as ‘1’ and ’0’ otherwise. Regarding sex, men and
women were coded as ’0’ and ’1’, respectively. None of the
features in the dataset contained outliers or missing data.

In Figure 1, histograms and bar plots were used to visualize
the distribution of continuous and binary features. It was
observed that patients were adults with a mean age of
45 years. Lifestyle information showed that most patients did
not exercise regularly and had a high smoking rate. Regarding
the types of albuminuria, most of individuals presented nor-
moalbuminuria, and a few patients had microalbuminuria and
macroalbuminuria. ST1RE [22] was used as risk calculator
to obtain the 10-year CVD risk in T1D patients. Contrary to
traditional CVD risk calculators that only considered age, sex,
SBP, LDL-cholesterol, EGFR, ST1RE included information
on DM duration, HbA1c, albuminuria, and patients’ lifestyle
(smoking and physical activity). The resulting CVD risk
ranged between [0, 1], with 0 and 1 denoting a low and
high risk, respectively. In the current work, the 10-year CVD
risk was considered as the target variable and used to train
predictive ML-based models.

III. METHODS
In this subsection, we first introduced the ML models
used to predict the CVD risk in T1D individuals. Then,
we detailed the data augmentation methods and discuss
how they are applied to the current study to enhance
the models’ performance for predicting CVD risk. Finally,
we presented the FS and post-hoc interpretability methods
to identify the most relevant CVD risk features and provide
model interpretability. A schematic of the interpretable and
data-driven workflow proposed in this study is shown in
Figure 2.

A. NOTATION
Let an input dataset X = {x(i)}Ni=1 consisting of N
samples, with the i-th sample represented by a vector x(i) =

[x(i)1 , . . . , x(i)D ] ∈ RD, where D is the number of features.
The corresponding target (10-year CVD risk by ST1RE) is
identified by y = [y1, . . . , yN ]. In this work, we estimated
the CVD risk (defined as ŷ) using several ML-based models.
We split the input dataset X into train subset Xtrain and test
subset Xtest , with 70% and 30% of the samples, respectively.
The training subset was only used for training the models,
whereas the test subset for evaluating the trainedmodels. Five
different partitions of train and test subsets were considered
to evaluate the generalization capability of predictive models.
The mean absolute error (MAE) and the mean relative
absolute error (MRAE) were considered as figures of merit,
defined as:

MAE =
1
Nt

Nt∑
i=1

|yi − ŷi| (1)

MRAE =

Nt∑
i=1

|yi − ŷi|/ŷi (2)

whereNt is the size of the test subset, xi is the i-th test sample,
and yi and ŷi are the true CVD risk and the predicted risk,
respectively.

B. ML-BASED MODELS TO PREDICT CVD RISK
In this study, due to the flexibility and high performance
of ML-based models, the KNN, DT, RF, and MLP models
were used to predict the 10-year CVD risk for T1D adults.
In contrast to most traditional statistical methods (based on
simple and multiple regression), ML models allow us to
model nonlinearity and capture complex patterns, which can
lead to better predictive results.

KNN is a nonparametric and nonlinear model that uses
dissimilarity measures to make predictions [39]. Unlike
parametric models, KNN does not make any assumptions
regarding the underlying data distribution, making it highly
flexible and suitable for a wide range of applications [40].
Formally, given a sample xi belonging to the test subset,
KNN computes the similarity measure between xi and all
samples in the training subset [41]. These measures are then
sorted to find smaller values and thus find the corresponding
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FIGURE 1. Histograms and bar plots associated with features of the dataset collected by the Steno Diabetes Center Copenhagen.

K-nearest neighbors. The prediction of xi is the mean of the
outputs of its K nearest neighbors. In the algorithm, both the
distance measure and the number of neighbors K are crucial
for achieving reasonable predictive results.

DT is a nonparametric and nonlinear model that divides
complex decisions into simpler ones and organizes them hier-
archically with a tree-like structure [42]. The feature space is
iteratively partitioned into regions containing homogeneous
sets of samples. Each partition (split) in the feature space
is represented as a new node in a tree-like structure [42].
DTs are very popular in the clinical field because of their
interpretability, which provides visualization of decision-
making processes [43]. During the tuning phase, several
hyperparameters, such as the splitting criterion, the minimum
number of samples for splitting, and the maximum depth of
the tree, need to be assigned. This is particularly relevant for
this algorithm because DT tends to cause overfitting when
the tree becomes overly complex, posing a challenge for
achieving generalization [42].
RF is a nonparametric ensemble model that combines

multiple DTs to make predictions [44]. Initially, from the
training subset, RF employs a bagging sampling method to
generateM training sets, each containing a similar number of
samples [45]. Subsequently, using these M training subsets,
RF constructs an ensemble ofM DTs. Finally, the prediction
is determined by averaging the results of M DTs [45].
The hyperparameters typically explored for RF include the
number of estimators (trees) and the number of features
considered at each split.

MLP is a feed-forward Artificial Neural Network (ANN)
consisting of an input layer, one or more hidden layers,
and an output layer, which are interconnected by processing
units called neurons [46]. Each neuron within a layer is
connected to the other neurons in successive layers through
weighted connections. During training, the weights are
randomly initialized, and the objective is to learn the optimal
weight values that minimize the error between the estimated
output of MLP and the real target. This is achieved using
the back-propagation algorithm combined with stochastic
gradient descent [47], which adjusts the weights of the
ANN in a supervised manner to minimize the error [48].
Furthermore, MLP has several hyperparameters that need to
be carefully tuned to optimize its performance. In this study,
we explored different numbers of neurons in hidden layers,
activation functions, the optimizer among others.

C. OVERSAMPLING METHODS
In the literature, a variety of techniques have been proposed
to increase the size of training subsets and improve predictive
results [49]. Resampling methods that create synthetic
samples for minority classes [50] have received considerable
attention because of their computational efficiency and
versatility [51]. However, in the clinical setting, datasets are
generally characterized by a high degree of heterogeneity,
and present mixed-type data with numerical and categorical
features [35]. Most oversampling techniques are designed
to work with numerical features and do not perform ade-
quately when mixed-type data are used. Recently, generative
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FIGURE 2. Workflow of the interpretable and data-driven approach for CVD risk prediction.

adversarial networks (GANs) [52] have gained great popu-
larity due to their impressive results in generating synthetic
data, especially in computer vision applications [53]. GANs
are generative models that train two networks simultane-
ously through an adversarial process: a generator G and
discriminator D. WhileG aims to produce synthetic samples,
D strives to differentiate between real and synthetic samples.
Despite the benefits of GANs in multiple applications [54],
thesemodels present several challenges for generating tabular
and mixed-type data. Recently, a novel GAN-based model
named CTGAN [35] has been proposed to address these
limitations. CTGAN uses a mode-specific normalization to
solve the problem of non-Gaussian distributions in numerical
variables, and a conditional generator to address imbalanced
categorical features [35]. Wasserstein divergence and the
weight clipping with a gradient penalty have also been used
to enhance synthetic data [35]. In a previous study [36], the
authors assessed the performance of GAN-based models to
create synthetic data with numerical and categorical features.
CTGAN exhibited the best performance to create synthetic
data by maintaining intrinsic characteristics from the original
data, leading to improvements in subsequent predictive tasks.

In this study, two data augmentation strategies were used:
over-per and over-level. In over-per, synthetic samples were
generated using a fixed percentage of all samples from the
training subsetXtrain. The percentage of samples was selected
from several values within the range [1, 20], being 5% which

provided an improvement in CVD-risk prediction. In over-
level, the number of synthetic samples was based on different
CVD risk levels. First, we categorized the 10-year CVD risk
(provided by ST1RE) into three levels: low, intermediate and
high. These levels were identified using the risk stratification
guidelines from the National Institute for Health and Care
Excellence [55] and by setting specific risk cut-off values,
thus distinguishing: (i) low-risk patients (CVD risk <0.1),
(ii)moderate-risk patients (CVD risk in the range [0.1, 0.2));
and (iii) high-risk patients (CVD risk ≥ 0.2). We split the
individuals in Xtrain into three groups (CVD risk levels),
identifying the one with the most samples (moderate-risk
patients). Then, the number of new samples for the low-risk
and high-risk groups was created by taking the number of the
moderate-risk group as reference.

D. FEATURE SELECTION METHODS
FS methods choose a subset of features and aim to achieve
several objectives [56], [57], [58]: (i) overcoming the curse
of dimensionality; (ii) reducing the computational cost for
training models; (iii) improving generalization capacity and
predictive performance in subsequent tasks; and (iv) enhanc-
ing interpretability. FS methods are classified into three
categories: filter, embedded and wrapper methods [56]. Since
no single FS method can guarantee optimal results in terms
of both predictive performance and stability of selection, this
study explored several FS methods. Specifically, a variety
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of filter and wrapper FS techniques are considered for:
(i) selecting the most relevant features that help to improve
model performance in predicting CVD; and (ii) identifying
those features that play a significant role in the development
of CVD.

Filter methods select features that present a strong relation-
ship with the target and work independently of any predictive
model [59]. They evaluate features based on specific scoring
criteria, such as statistical tests, mutual information (MI),
or dissimilarity measures, and subsequently select a subset
of features with the highest scores, discarding those deemed
irrelevant [59]. In this study, we employed the minimal
redundancy and maximal relevance (mRMR) [60] and
Relief [61] methods as filter-based FS methods. These meth-
ods were chosen because of their computational efficiency
and their ability to identify relevant features that contribute
to enhancing performance in subsequent predictive tasks.

mRMR method performs FS by minimizing the redun-
dancy among features and maximizing the relevance of the
features to the target [60]. To compute redundancy and
relevance, mRMR uses MI, which quantifies the amount of
information that one random variable encompasses about
another [60]. Formally, given two random variables X and
Y , the MI is computed as follows [62]:∑

x∈X

∑
y∈Y

ρ(x, y)log(
ρ(x, y)

ρ(x)ρ(y)
) (3)

where ρ(x, y) denotes the joint probability density function
(PDF), ρ(x), and ρ(y) represent the PDFs of X and Y ,
respectively. Relief measures the relevance of features by
uncovering the dependencies between the features and
target [61]. The algorithm is as follows. First, a sample is
randomly selected, and then the feature vectors of the nearest
samples from both the same class and different classes are
identified. This process allows to rank the importance of each
feature individually, similar to a univariate approaches, while
consider dependencies among other features. Relief has been
extensively used because of its simplicity and effectiveness,
particularly in high-dimensional feature spaces [61].

Wrapper methods iteratively train prediction models by
searching for the best feature subset [57]. They use a predic-
tive model to assess the effectiveness of feature subsets using
a search strategy, making them computationally complex and
time consuming [59]. Despite these drawbacks, they benefit
from their interaction with predictive algorithms to identify
the best performing feature subsets. This study considers
the following wrapper methods: permutation importance
(PI) [63] and particle swarm optimization (PSO) [64]. The
PI was originally proposed for the RF algorithm [65], and
further research was developed to create a model-agnostic FS
method [66]. It quantifies feature importance by measuring
the change in a specific figure ofmerit (e.g., accuracy for clas-
sification, MAE for regression) when a feature is excluded
as an input to obtain model predictions [63]. The importance
is assessed through the feature importance difference (FID),

which is calculated as the difference between a reference
score and a corrupted score [67]. The reference score is
derived using the original features, whereas the corrupted
score is the average after shuffling features a fixed number
of times [67]. A feature is considered significant if shuffling
significantly affects the score (high FID value), indicating its
strong impact on model predictions. MRAE was chosen to
evaluate the impact of permuting features on the predictive
performance of ML-based models [67].

PSO is a metaheuristic optimization algorithm inspired
by the collective behavior of swarms in nature, such as
bird flocking [64]. In the context of optimization problems,
a swarm is conceptualized as a group of particles, where
each particle represents a potential solution [68]. Similar
to how a flock of birds collectively searches for the best
landing spot, PSO iteratively seeks an optimal solution by
simulating the movement of particles within a search space.
Regarding FS, each particle in PSO represents a potential
solution, characterized by a multidimensional position vector
and a multidimensional velocity vector [69]. In the former,
dimensionality is equal to the number of features, and each
dimension represents the probability of a feature to be
selected. The velocity of the particle is updated after each
iteration, depending on the particle’s best position and the
global best position, which are determined using a fitness
function [69]. PSO finds the optimal regions of complex
search spaces through the interaction of individuals in a
population [70]. In contrast to other optimization algorithms,
PSO presents global search capability, high computational
efficiency, fast convergence rate, minimal parameter tuning
requirements, and avoids local minima [71].

E. POST-HOC INTERPRETABILITY METHODS FOR
IDENTIFYING CVD RISK FACTORS
In the clinical setting, obtaining models with high predictive
performance is not sufficient for physicians and clinical
researchers, and it is crucial to understand why models pro-
vide a particular outcome. Owing to ever-increasing advances
in ML for healthcare, it is paramount to provide interpretabil-
ity to trained models [30]. Interpretability is defined as the
process of generating human-understandable explanations
of outcomes provided by computational models [43]. The
interpretability in supervised approaches aims to explain how
predictions are achieved for any given input [72]. Several
methods have been developed for model interpretability,
being post-hoc and model-agnostic approaches the most
used [73]. These techniques can be categorized into global
and local approaches [74]. Global approaches describe the
overall behavior of a model, whereas local approaches aim
to explain how the models reached a prediction for a specific
input. In this study, two post-hoc and global methods were
considered: SHAP [32] and ALE [33].
SHAP is a post-hoc interpretability method that identifies

the features that significantly impact on the model’s pre-
dictions [32]. SHAP uses Shapley values from coalitional
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game theory, combining optimal credit allocation and local
explanations [32]. Each feature value of a data sample is
conceptualized as a player in a game, where the prediction
of the sample minus the average prediction for the dataset
is considered the payout [32]. Shapley values ensure fair
distribution of this payout among players based on their
contribution to the output, thus explaining the average
marginal contribution of a feature value across all possible
coalitions [74]. Summary plots are commonly used to
visualize the Shapley values and feature importance [32].
These plots combine the feature importance for a prediction
task, with each point representing the Shapley value given for
a feature in a particular sample. The features are organized in
decreasing order of importance for model prediction on the
vertical axis, the horizontal axis shows the Shapley value, and
a color bar is used to show the value of the feature for each
sample. In the following section, we provide an example of a
SHAP plot using the results from the trained ML models.

ALE is a post-hoc interpretability method proposed as
an alternative to partial dependence plots (PDPs) [33].
Although both PDPs and ALE aim to visualize how
features impact on the model’s predictions [33], [74], PDPs
present two main disadvantages. PDPs are computationally
expensive, and when features present high correlations, they
are unreliable because their development involves including
artificial data samples that are not representative of the
original data [75]. By contrast, ALE computes the differences
in predictions averaged over the conditional distribution of
each feature [33]. This approach avoids the need for artificial
data samples and provides more reliable interpretations,
particularly in the presence of correlated features [33]. ALE
allows the visualization of the effect of feature interactions
and provides insights into how the model’s predictions
change with variations in feature values [33]. For example,
ALE can be used to analyze the effect of the interaction
between two features by averaging the changes in model’s
predictions.

IV. EXPERIMENTAL RESULTS
In this section, we analyze the effectiveness of combining
different FS methods and ML-based models for predicting
CVD risk in T1D adults. We first present the experimental
setup, and then an extended comparison of the predictive
performance of ML-based models by using all features and
those selected by FS methods. Finally, we identified the risk
factors involved in the development of CVD using FS and
post-hoc interpretability methods.

A. EXPERIMENTAL SETUP
In this study, ML models DT, KNN, MLP, and RF are
used to predict 10-year CVD risk in individuals diagnosed
with T1D. Although DT and KNN were used in a previous
work [76], the overall results were not the highest because of
the scarcity of samples in the dataset. We extend and evaluate
the effectiveness of tabular data augmentation models based
on GANs for generating synthetic mixed-type data that leads

to improved predictive performance, thus achieving better
CVD risk prediction. The source code for reproducibility of
results is available in github.com/ai4healthurjc/cvd-risk-fs-
ctgan.

To find the best hyperparameters of ML models,
k-fold cross-validation (CV) [77] was performed, with
k = 5 and the MRAE as the figure of merit. The following
hyperparameters were explored: for DT, the split criterion
(Gini, entropy), the maximum depth in the range [2, 12]
and the minimum samples per split in the range [2, 20];
for KNN, K values between [1, 15]; for RF, the number
of samples per split between [2, 6] and the number of
estimators in the range [10, 40]; and for MLP, the number
of neurons, and the weight initialization approach (random,
uniform, Glorot) were examined. Specifically, we selected
an architecture composed of mn inputs (the same size as
the input features, D), a single hidden layer with h neurons,
and a single neuron in the output layer. Different numbers
of neurons in the hidden layers were explored, including
{2, 4, 6, 8, 10, 12}. ReLu was considered as the activation
function for neurons in the input and hidden layers and
the sigmoid activation function for the output layer. Adam
optimization was considered, and the mean squared error was
used as the loss function.

In this study, we analyzed and compared the impact
of different feature subsets (FES) of the original dataset
provided by the Steno Diabetes Center Copenhagen [22] to
identify 10-year CVD risk. Several subsets were selected
using filter FS (mRMR, Relief) and wrapper FS (PI, PSO)
methods, which are described as follows.

1) FES1 contains all features of the dataset;
2) FES2 considers demographics (age and sex) and

lifestyle features (exercise and smoking);
3) FES3 contains selected features by the PI method;
4) FES4 contains selected features by the PSO;
5) FES5 contains selected features by mRMR;
6) FES6 contains selected features by Relief;

B. PREDICTING CVD RISK FOR T1D PATIENTS
Table 1 shows the predictive results (measured by MAE and
MRAE) using different FES, ML models and oversampling
strategies. As stated, both FES1 and FES2 are independent of
FSmethods, with the former considering all features, whereas
the latter only selects demographic and lifestyle features (age,
sex, smoking, and exercise). For FES1, MLP achieved the
best predictive performance, obtaining the highest values for
MAE and MRAE, with 0.0112±0.0011 and 0.1072±0.0056,
respectively. Most ML-based models trained using real and
synthetic samples generated by CTGAN (considering over-
per and over-level) achieved a slight improvement in MAE
andMRAE. The lowest predictive results were obtained using
FES2, demonstrating that the clinical features play a crucial
role in CVD prediction.

Regarding FES3 and FES4, it can be observed that the
selection of features by the wrapper FSmethods improved the

84298 VOLUME 12, 2024



D. Chushig-Muzo et al.: Interpretable Data-Driven Approach Based on FS Methods and GAN-Based Models

TABLE 1. MAE and MRAE obtained by combining different FS methods and ML models. The results without oversampling (WO) and considering over-per
and over-level are shown. The best results for MAE and MRAE are marked in bold.

FIGURE 3. Scatter plots that compare the 10-year CVD risk provided by ST1RE (x-axis) and the estimated CVD risk (y-axis) by ML-based models,
considering: (a-d) FES1; and (e-h) FES4 using over-per and MLP as predictive model since it provided the best results in MAE and MRAE (see Table 1. First
column (DT), second column (KNN), third column (MLP) and fourth column (RF).

predictive results compared to FES1 (all features). As argued,
the features selected in these approaches depend directly
on the ML algorithm. Overall, the features selected using
PSO (FES4) achieved the best MAE and MRAE values,
with 0.0088±0.0006 and 0.0817±0.0129, respectively, out-
performing the results of the different FES. The feature subset

obtained by PI (FES3) also provided reasonable results,
performing the same as when using the entire set of features.
Regarding the filter methods (FES5 and FES6), the features
selected by mRMR and Relief led to obtain low MAE and
MRAE values. In Figure 3, we visually compare the CVD
risk obtained with ST1RE versus the estimated CVD risk

VOLUME 12, 2024 84299



D. Chushig-Muzo et al.: Interpretable Data-Driven Approach Based on FS Methods and GAN-Based Models

FIGURE 4. Heatmaps that indicate the frequency of selection of features by wrapper FS methods and considering: (a-c) FES3 (PI); and (d-f) FES4
(PSO). We show the selected features considering data WO (left panels), and using the oversampling strategies: over-level (middle panels) and
over-per (right panels).

obtained using ML models. Note that models trained with
FES1 and FES4 were considered. As shown, MLP was the
modelmost effective, providing less error in the predicted risk
for each patient. DT and KNNworked correctly for CVD risk
< 0.2, but they presented difficulties otherwise. RF and MLP
obtained similar results, and although the errors between real
and estimated CVD risks were small in RF, these errors were
less marked in MLP.

C. IDENTIFYING CVD RISK FACTORS USING FEATURE
SELECTION AND INTERPRETABILITY METHODS
In this subsection, we showed the most informative features
selected by FS methods, which led to the identification
of risk factors associated with the development of CVD
in T1D patients. Subsequently, we employed two post-hoc
interpretability methods to identify the most relevant features
that impact in the predictions of ML models.

Figure 4 shows the features selected by the wrapper FS
methods (PI and PSO), indicating the frequency of selection
of each feature (number of times that features were selected)
for five train partitions. The x-axis and y-axis represent the
ML model and feature name, respectively. As five partitions
were considered, the maximum number of votes could last
up to five. We selected only wrapper methods to analyze
how the selection of ML models affects the selected features
and to measure the stability and robustness of the selection.
A consensus on the features selected using different partitions
and ML models increase the reliability of the predictive
results. By analyzing the features selected in FES3 (see
Figure 4 (a-c)), we can observe that both age and Hba1c
were chosen in all cases (unanimity voting), considering
data augmentation strategies (over-per and over-level), and
data without oversampling (WO). Normoalbuminuria was
the feature that received the third-most votes, reaching five
votes by all ML models trained with data with over-per and
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FIGURE 5. SHAP mean values (mean and standard deviation) obtained
over the 5 partitions considering features of FES4.

over-level, whereas for data WO, the votes were five (MLP
and RF) and four (DT and KNN). Regarding the features
selected by the PSO (FES4) (see Figure 4 (d-f)), the most
frequently selected were age, Hba1c, normoalbuminuria,
sex, and smoking. Notably, the best predictive results were
achieved using the features selected by PSO, which may be
due to the variability in the selection of features for different
partitions. Note also that age, Hba1c and normoalbuminuria
were the features with the most votes, followed by sex and
smoking. There was a significant difference with PI, where
fewer votes were in favor of sex and smoking features.

To distinguish the impact of features on the CVD risk
prediction and determine potential risk factors, post-hoc
interpretability methods SHAP and ALE were used. Figure 5
presents the SHAP summary plot that shows the SHAP mean
values obtained over five partitions and using FES4. In this
plot, features are sorted in the y-axis in decreasing order of
importance for the predictive task and the x-axis represents
the SHAP mean values. As shown, age presented the highest
SHAP values, standing out above the rest of the features for
all the models (DT, KNN, MLP and RF). The second and
third features with the highest SHAP values were Hba1c and

normoalbuminuria, respectively. These findings were also
supported by the previous analysis, where age, Hba1c and
normoalbuminuria were the features most frequently selected
by FS methods (see Figure 4).

The results obtained using SHAPwere also validated using
ALE. Figure 6 shows the ALE plots associated with the
features of FES4 and using the MLP model. The ALE plots
for MLP are shown because this model achieved the highest
predictive performance (the best MAE andMRAE in Table 1.
For continuous features (age, DM duration, EGFR, Hba1c,
LDL, SBP), ALE shows the effect of the feature values
(x-axis) on the predicted outcome (y-axis). The confidence
interval (CI) of the estimated effect on predictions is depicted
in gray. For binary variables (exercise, macroalbuminuria,
microalbuminuria, normoalbuminuria, sex, and smoking),
a bar plot with a line representing the estimated effects
and error bars showing the CI are depicted. The number
of patients for each feature value is depicted in violet, and
the difference in the impact on predictions is represented
by a dashed line connecting the average impact of each
feature value. Figure 6 shows that age has a monotonically
increasing effect on the CVD risk. As expected, older
patients were at higher risk of developing CVD. After age,
Hba1c had a strong effect on the predictions following a
growing curve. Note that the impact of presenting age was
approximately four-fold higher than Hba1c. SBP and LDL
also showed ascending curves, where greater values implied
higher CVD risk. Note that SBP, LDL, and DM duration
had less impact on the predictions (see the range on the
left of the plots), with a maximum effect of prediction
between [0.02, 0.05]. Normoalbuminuria had a high effect on
prediction (0.1), indicating that this type of albuminuria is key
for CVD risk prediction, and in line with the results of SHAP
feature importance and selected features by FS methods.
Macroalbuminuria presented a low effect on prediction.
Regarding demographic and lifestyle features (sex, exercise,
and smoking), both exercise and sex had a moderate effect on
predictions (with a maximum effect estimation of 0.02).

V. DISCUSSION
In this work, we analyzed the effectiveness of ML models
for predicting 10-year CVD risk in T1D individuals. First,
we evaluated the predictive performance of several ML
models, specifically DT, KNN, MLP, and RF. Subsequently,
several filter and wrapper FS techniques were used to identify
the features most relevant in CVD risk prediction, with
the aim of extracting relevant risk factors and improving
predictive performance. We also evaluated two oversampling
strategies (over-per and over-level) and using CTGAN to
create synthetic samples and improve subsequent predictive
tasks. The best predictive results were achieved using the
MLP model, employing over-per and the features selected by
PSO, obtaining a MAE of 0.0088±0.0006 and a MRAE of
0.0817±0.0129. As shown, the addition of synthetic samples
created by CTGAN helped to better improve CVD risk
prediction, although this improvement was small. In a future
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FIGURE 6. ALE plots obtained for the best predictive model (MLP model using FES4 and data augmentation with over-per).

work, to enhance predictive results, the CVD risk levels
selected can be changed, and also include other GAN-based
models that work with tabular data.

The post-hoc interpretability methods SHAP and ALE
were used to gain interpretability in the trained ML models.
By analyzing the results of the wrapper FS techniques and
SHAP values, we obtained several valuable insights. Age,
Hba1c and normoalbuminuria were mostly selected by the
wrapper FS methods (see Figure 4) as the most significant
features involved in the prediction of CVD risk. These
features have been extensively studied as relevant risk factors
for CVD development in clinical studies [78], [79]. Previous
research has identified that CVD risk increases with aging,
with age being the most important non-modifiable risk factor
for the development of CVDs [6]. Regarding Hba1c, several
clinical studies [7], [80] have recognized that a high HbA1c
level is associated with increased CVD risk. HbA1c provides
a measure of average glucose levels over time, reflecting the
average plasma glucose level over the previous 8-12 weeks.
Despite its benefits, it only provides an approximate measure
of glucose control and does not consider short-term glycemic
variability, which can indicate its lower impact on the 10-
year CVD risk in this study. Although the effect of Hba1c
on CVD prediction is lower than that of age, when comparing
the corresponding ALE plot (see Figure 6), it can be observed
that higher values of Hba1c increase CVD risk.

Several clinical studies have reported that elevated albumin
levels can be associated with the onset of several CVDs,
such as ischemic heart disease, heart failure, atrial fibrillation,

and stroke [81], [82]. In contrast to normoalbuminuria, the
relevance of macroalbuminuria and microalbuminuria was
significantly lower in all ML models. In the case of SBP and
LDL (see Figure 6), models identified a positive relationship
with the output, but the magnitude of the effect on prediction
was low compared to age or Hba1c. Regarding demographic
and lifestyle features, both physical exercise and smoking
had a slight impact on model predictions. Several clinical
studies have examined behavioral risk factors associated with
CVD, the most important being tobacco use followed by
physical activity, which are widely recognized as risk factors
for different chronic diseases [83], [84]. As stated, our study
used a cohort of patients diagnosed with T1D and lifestyle
features (e.g., smoking, exercise) have been less associated
with CVDs.

VI. CONCLUSION
In this study, we analyzed the performance of several
ML-based models for predicting the 10-year CVD risk
in older adults with T1D. To improve the performance
of these models, we combined filter and wrapper FS
methods and tabular data augmentation with the GAN-
based model, CTGAN. CTGAN was effective in creating
synthetic data for mixed-type data and helped to improve
the results of CVD risk prediction. Our methodology,
which leverages the advantages of FS methods and data
augmentation approaches, provided significant predictive
results for identifying CVD risk, with the best figures of
merit achieved using MLP and over-per with a MAE and
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MRAE of 0.0088 and 0.0817, respectively. Our work has
also shown that FS methods and post-hoc interpretability
methods are capable of identifying risk factors involved in
the development of CVD risk, highlighting the importance of
non-modifiable factors such as age, Hba1c and albuminuria
over 300 mg/g (normoalbuminuria). Among modifiable risk
factors, the physical activity was recognized as one of the
most important. This study highlights the significance of ML
in the clinical setting, particularly for predicting CVD risk
in T1D individuals, supporting the creation of automated
prediction systems and identification of disease risk factors.
ML models are promising for CVD risk assessment and sup-
port the identification of high-risk individuals and prevention
of the onset of acute clinical events.
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