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ABSTRACT Type 1 Diabetes (T1D) is an autoimmune condition that results in an insulin deficiency. People
with T1D require the administration of exogenous insulin to maintain target glucose levels. However, insulin
therapy can cause hypoglycemic episodes, which occur when blood glucose levels fall below 70 mg/dL.
Nocturnal Hypoglycemia (NH) occurs while the individual is asleep and can lead to different clinical
complications. Developing predictive approaches to predict NH before sleep could reduce these episodes
and mitigate acute complications. While numerous models exist for Time Series Classification (TSC), their
use for NH prediction remains limited. This study evaluates 14 different TSC models for NH prediction,
assessing their performance by evaluating classification metrics, computational time, and environmental
impact (measured by energy consumption and COy emissions). The approaches include distance-based,
convolutional-based, deep learning, dictionary-based, feature-based, shapelet-based, and interval-based
methods. We employed glucose data from 52 individuals with TI1D. Experimental results showed that
interval-based and feature-based approaches achieved the best predictive performance, obtaining the highest
Area Under the Curve Operator (AUCROC) of 0.703. Additionally, both demonstrated low environmental
impact due to their short computational time. However, substantial differences in environmental impact were
observed depending on the approach. Distance-based methods and deep learning approaches exhibited the
highest environmental impact. This paper provides key insights into the effectiveness of TSC models for NH
prediction, highlighting the trade-off between model performance and environmental impact.

INDEX TERMS Nocturnal hypoglycemia, type 1 diabetes, continuous glucose monitoring, time series
classification, carbon footprint, green machine learning, environmental impact.

I. INTRODUCTION is administered through either multiple daily injections or

Over the past several years, the incidence and prevalence
of Type 1 Diabetes (T1D) have increased worldwide [1]]. In
2021, T1D affected an estimated 8.4 million people globally,
and approximately 510,000 new cases were reported [2]]. T1D
is an autoimmune disease caused by the destruction of pan-
creatic islet beta cells that leads to either absolute or partial
insulin deficiency [3]. To maintain target glycemic levels,
commonly between 70 and 180 mg/dL, exogenous insulin
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continuous subcutaneous infusion pumps [4]].
Hypoglycemia is a side effect of insulin therapy that occurs
when blood glucose falls below 70 mg/dL for at least 20
minutes [5]-[7]. Nocturnal Hypoglycemia (NH) refers to a
hypoglycemic episode that occurs while a person is asleep at
night and it is particularly common among individuals with
T1D [8]l. According to an international consensus [5]-[7], NH
is defined as hypoglycemia that occurs while an individual is
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asleep. NH is associated with clear disturbances in sleep and
negatively affects subjective sleep quality. Sleep disturbances
can also lead to insulin resistance and poor glycemic con-
trol [9]]. Therefore, predicting NH may help individuals with
T1D to better manage glucose control, reduce hypoglycemic
events and improve patient’s quality of life.

Technological advances in Continuous Glucose Monitor-
ing (CGM) devices, which measure interstitial glucose, have
significantly improved the tracking, control and management
of glucose levels over time, improving patient’s quality of
life and preventing clinical complications [10]. The emer-
gence of Machine Learning (ML) models has created valuable
opportunities to enhance healthcare applications, supporting
clinical decision-making. More specifically, in diabetes re-
search, several ML models have been proposed to forecast
glucose levels over different prediction horizons (PH) [[11[]-
[13]l, including the prediction of potential episodes of severe
hypoglycemia [[14], [[15]]. Several studies have employed ML-
based models to predict hypoglycemia [16]], but a few have
been proposed for predicting NH [[17]—[21]. Most approaches
first perform a statistical feature extraction from CGM data,
and then, different ML models are employed to predict NH.
In the literature, a variety of Time Series Classification
(TSC) methods, including distance-based, dictionary-based,
shapelet-based, and interval-based approaches have shown
excellent results in other applications [22]], [23]], but these
remain unexplored for NH prediction.

In the past decade, the resurgence of Artificial Neural
Networks (ANNs) and the advent of Deep Learning (DL)
models have brought great milestones, with high predictive
results in multiple domains [24], [25]]. However, the current
trend in DL focuses on enhancing model performance by
increasing their size (through additional layers and neurons),
resulting in a higher number of parameters and floating-point
operations. This increases the computational cost for training
and inference, requiring significant memory and energy re-
sources, and leading to substantial energy consumption, water
usage for cooling data centers, and increased greenhouse gas
emissions [26]]—-[28]]. To address this, tools that assess energy
consumption and carbon emissions of ML/DL models [29],
[30] are crucial. These tools promote the creation of more
sustainable models, aligning with green artificial intelligence,
which prioritizes reducing computational costs while main-
taining a balance between efficiency and predictive perfor-
mance [27].

Therefore, this paper aims to provide a comprehensive
evaluation of different models to predict the occurrence of
NH episodes. The evaluation is conducted across two key
categories: (ii) predictive performance; and (ii) environmen-
tal impact. To achieve this, we train 14 different models
across seven categories (two models per category). The next
methods were evaluated: (1) distance-based methods (Prox-
imity Forest (PF) [31] and Dynamic Time Warping with
K-Near Neighbours (DTW-KNN)) [32]); (2) convolutional-
based models (Random Convolutional Kernel Transform
(ROCKET) [33] and T-Rep [34]); (3) DL-based models
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Inception [35] and LITE [36|]; (4) dictionary-based tech-
niques (WEASEL_V2 [37] and Multiple Representations Se-
quence Miner (MrSQM) [38])); (5) feature-based techniques
(with features extracted using GlucoStats, tsfresh [39]); (6)
shapelet approaches (Random Scalable and Accurate Sub-
sequence Transform (RSAST)) [40] and Random Dilated
Shapelet Transform (RDST) [41]l; (7) interval-based meth-
ods (QUANT [42]], the Randomized-Supervised Time Series
Forest (r-STSF) [43]). We employed CGM data from 52 indi-
viduals with T1D and collected at the Complejo Hospitalario
Insular-Materno Infantil de Las Palmas de Gran Canaria. To
the best of our knowledge, this is the first study that evaluates
multiple TSC models for predicting NH in individuals with
T1D, analyzing both predictive performance and environ-
mental impact.
The primary contributions of this paper are as follows:

« Implementation of novel TSC methods from seven dif-
ferent categories to predict the occurrence of NH using
CGM data belonging to T1D people.

o Evaluation of the performance of 14 different models
by analyzing their performance and computational ef-
ficiency.

o Analysis of the environmental impact of each of the
14 models by computing their energy consumption and
CO- emissions.

This paper is organized as follows. A review of related
work is presented in Section [[I] The dataset description and
preprocessing are described in Section whereas the pro-
posed methodology and TSC models are further detailed in
Section Experimental results are shown in Section [V]
and finally, discussion and conclusions are presented in Sec-
tion[VI]and Section [VII} respectively.

Il. RELATED WORK

In the literature, numerous studies have employed ML and DL
models to predict hypoglycemia [16]], [46]], but few have in-
vestigated NH prediction. This section provides an overview
of state-of-the-art methods used for NH prediction, with a
particular emphasis on datasets from individuals with T1D.
A summary of these methods is shown in Table[T]

Vu et al. [|17] employed a large dataset consisting of ex-
tracted features from CGM data over one million nights. The
Random Forest (RF) model was used to predict NH within
a 6-hour PH, achieving an Area Under the Curve Operator
(AUCROC) of 0.90 for early night (from midnight to 03:00
AM) and 0.75 for late night (from 03:00 AM to 06:00 AM).
In a similar way, Mosquera-Lopez et al. [18] extracted 59
features from CGM data and information about insulin, and
meals from 124 individuals, with a total of 22,804 nights. The
predictions were made during sleep between 00:00 and 05:59
(approximately 6 hours of PH). Support vector regression and
a decision-theoretic criterion were used to predict overnight
minimum glucose levels and NH, obtaining an AUCROC of
0.86. Jensen et al. [[19] combined CGM data with information
about meals, insulin usage, and demographics from a dataset
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TABLE 1: A comparative analysis of methodologies presented in the literature for predicting nocturnal hypoglycemia in
individuals with diabetes. These works were sorted by publication date, ordered from the earliest to the latest. Note that samples
refer to the number of nights of CGM data considered for the study.

Study Year | #people | #samples | Prediction Models Data Dataset
horizon used modality
Vu et al. [17] 2019 10,000 1,000,000 | 6 hours RF CGM statistics, | Private
insulin
Mosquera-Lopez et al. [|[18] | 2020 | 134 22,804 6 hours SVR CGM statistics Tidepool
insulin, meals platform
Jensen et al. [19] 2020 | 463 4,721 6 hours LDA CGM statistics Clinical trial,
insulin, meals daily living
Berikov et al. [20] 2022 | 406 6,451 15 minutes, | RF, LASSO | CGM statistics Private
30 minutes MLP hospital
Mosquera-Lopez et al. [21]] 2024 | 366 44.154 8 hours SVR, ENN CGM statistics Glooko,
TIDEXI
Kozinetz et al. [44] 2024 | 380 380 30 minutes CNNs CGM Private
hospital
Leutheuser et al. [45] 2024 13 66 8 hours RF, LR, CGM statistics Private
MLP, RNN hospital
Description of acronyms: Continuous Glucose Monitoring (CGM), Convolutional Neural Networks (CNN), Evidential Neural Network (ENN), Linear

Discriminant Analysis (LDA), Least Absolute Shrinkage and Selection Operator (LASSO), Linear Regression (LR), Multilayer Perceptron (MLP), Recurrent
Neural Network (RNN), Random Forest (RF), Support Vector Regressor (SVR), The Type 1 Diabetes and Exercise Initiative (T1DEXI).

of 463 people with T1D, with a total of 4,721 nights. By com-
bining the linear discriminant analysis with feature forward
selection, the authors achieved an AUCROC of 0.79 for NH
prediction within a 6-hour PH.

Berikov et al. [20]] analyzed CGM data from 406 adults,
employing RF, Least Absolute Shrinkage and Selection Oper-
ator (LASSO), and the Multilayer Perceptron (MLP) for NH
prediction in PHs of 15 and 30 minutes. The models obtained
AU-ROC values of 0.97 and 0.94, respectively. The extracted
features included various glucose dynamics statistics, such
as the coefficient of variation and low blood glucose index.
Mosquera et al. [21]] extracted descriptive features from CGM
data across different time frames before sleep (e.g., previous
7 nights, daytime or 30 minutes). The Evidential Neural Net-
work was developed to predict NH, achieving an AUCROC
of 0.80 and 0.71 for 0—4 hours versus. 4-8 hours, both after
bedtime. Kozinetz et al. [44] employed CGM data from 380
T1D individuals to train multiple DL. and ML models. The
models predicted NH for 30-minute PH, achieving an F1-
score of 0.86. Finally, Leutheuseret al. [45]] extracted statistics
from CGM data and combined them with physiological data
from 13 children over 66 days, specifically on days when they
performed physical exercise. Logistic Regression (LR), RF,
and MLP models were trained. The best-performing model
was RF which achieved an AUCROC of 0.752. However,
the high standard deviation values suggested that the small
sample size significantly impacted the model’s stability.

Following the review of the literature, we identified two
research gaps in the existing methodologies. First, most ap-
proaches used statistical features extracted from CGM data
to predict NH [17]-[21]]. After feature extraction, several
ML-based models such as RF, LASSO, LR and MLP were
considered to predict NH. Only two studies explored the
use of DL-based models on CGM data [44], [45]. In [44],
the authors used Convolutional Neural Networks (CNNs),
whereas in [45]], recurrent neural networks were considered.
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The literature review for time-series classification revealed
that various methodologies beyond statistical feature extrac-
tion and traditional ML approaches have been explored in
different areas such as biomedical applications, human ac-
tivity recognition, cybersecurity and others [23]]. However,
most TSC models remain underexplored for NH prediction.
Second, none of the previous methods provided an analysis of
time and energy consumption as well as CO5 emissions. The
increasing computational demands of ML and DL models
require evaluating not only the predictive performance but
also the environmental impact and carbon footprint. Despite
the growing awareness of the environmental impact of Al,
there is a lack of studies quantifying these factors in the
context of TSC, and more particularly for NH prediction.

1Il. DATASET DESCRIPTION AND PREPROCESSING

This section presents the dataset used and describes the pre-
processing stage. We employed CGM data from 52 partici-
pants with T1D, collected at Complejo Hospitalario Insular-
Materno Infantil de Las Palmas de Gran Canaria. The partic-
ipants had a mean age of 46.4 years with a standard deviation
(STD) of 10.3. The sample was gender-balanced, consisting
of 50% women and 50% men. CGM data were captured using
the FreeStyle Libre 2 and FreeStyle Libre 3. Participants
signed written, informed consent for the use of their data.
The Provincial Ethics Committee of Las Palmas deemed the
study exempt from assessment because it fell outside the
Biomedical Research regulation.

Patients were invited to participate in this study by the
physicians belonging to the WARIFA project in sched-
uled visits at the diabetes clinic. WARIFA is an interna-
tional project that aims to build Al-based and personal-
ized models for discovering risk factors and predicting Non-
Communicable Diseases (NCDs). Several authors of this
study are members of the WARIFA project. CGM data from
these participants were securely stored on a server accessi-
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ble only through a virtual private network, with credentials
restricted to authorized personnel involved in the WARIFA
project. The raw data were retrieved in comma-separated
values (CSV) format from the LibreView platform by one of
the authors of this study.

The preprocessing stage started with the training/test di-
vision of the dataset. We considered 42 and 10 individuals
for training and testing, respectively. Then, multiple samples
were created for each user. Each sample consisted of daytime
and nighttime periods, where nighttime was defined as the
interval between midnight and 6 AM, and daytime covered
the period from 12 PM to midnight. Ideally, each patient has
associated 365 samples, with paired daytime and nighttime
recordings for each day of the year.

Due to the presence of missing values in the CGM data,
we applied the following criteria: samples with more than
10% missing values during daytime or missing values during
the nighttime were excluded. If a given day had more than
10% missing data, the following night was also discarded.
Similarly, if any missing data were detected during the night,
the previous day of CGM data was removed. Therefore, only
a total of 8,875 samples were extracted from the 52 users,
with an average of 170 samples per user. Then, linear inter-
polation [47]] was considered to impute missing values (with a
maximum of 2 hours of CGM data) during the daytime period
owing to its efficacy in short-term periods [48].

Finally, the daytime period is used as input for our TSC
models, whereas the nighttime is employed to define the tar-
get class. This class is determined based on the occurrence of
NH, defined as at least 30 consecutive minutes of interstitial
glucose levels below 70 mg/dL (< 3.9 mmol/L) during the
nighttime interval. As a result, in 6,990 samples the daytime
period was not followed by an NH event, while in 1,885
samples an occurrence of an NH event was detected.

IV. METHODS
In this section, we introduce the notation, proposed method-

ology as well as the predictive models considered to predict
NH in T1D people.

A. NOTATION

Let an input dataset D = {(x;,y:)}Y,, consisting of N
patients, where x; represents glucose values recorded by a
CGM device during daytime, and y; indicates the presence
or absence of a NH event during the following night. Each
sample x; is represented as a vector x; € R1*7, where T de-
notes the number of time steps. These time steps correspond
to a sequence of temporally ordered observations, forming a
TS. In this study, we set T = 48, so we only take into account
12 hours of CGM to make the prediction. Regarding the label
class, each sample in y; is determined by:

if patient i developed NH,
otherwise.

To thoroughly quantitatively assess the predictive perfor-
mance of the models, we employed a variety of classifica-
tion metrics, including AUCROC, recall, and specificity [49].
These were computed based on the prediction of both positive
and negative classes, using the following categories: true
positives (TP), true negatives (TN), false positives (FP), false
negatives (FN), true negative rates (TNR), and false positive
rates (FPR).

TP + TN
TP+ TN + FP + FN

Accuracy =

1
AUCROC = / TPR(FPR) d (FPR)
0

FP
FPR= ——
FP+ TN
TP
TPR = —
TP + FN
TP
Recall = ——
TP + FN
N
Specificity = ———
TN + FP

B. PROPOSED WORKFLOW

In this study, we develop a data-driven approach for predicting
NH in individuals with T1D using various TSC methods. A
schematic of the workflow is shown in Figure[I} Our approach
consists of the following five stages.

1) Train/test division: To ensure adequate training and
evaluation, we randomly split the dataset (consisting of
52 participants) into a training subset and a test subset,
with 42 and 10 participants, respectively.

2) Data preprocessing: Due to the CGM devices used
(FreeStyle Libre 2 or 3), data presented different acqui-
sition frequencies and formats. To standardize data, we
resampled them to a uniform 15-minute interval. Next,
we split CGM data into two periods: daytime (12 PM to
12 AM) and nighttime (12 AM to 6 AM). Samples with
any missing values during the night or more than 10%
missing values during the day were discarded. Finally, a
linear interpolation was applied to fill gaps in the CGM
time series.

3) NH detection: An NH event was determined as any
sample where CGM recordings dropped below 70
mg/dL for 30 minutes during the nighttime period.
Samples meeting this criterion were labeled as ‘1’ (NH
event), while all other samples were labeled as ‘0’ (no
NH event).

4) Model training: Prior to training, we applied a random
under-sampling technique to ensure a balanced dataset.
We employed various ML-based methods for NH pre-
diction, spanning multiple model architectures across
seven categories (described in the previous section).

5) Performance evaluation: A comprehensive evaluation
of different TSC models was performed using various
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3. NOCTURNAL HYPO DETECTION
A 4 & measurements 1

Blood glucose levels fall below 70 mg/dL *

4. PREDICTION MODELS

; for 30 minutes between 12 pm and 6 am Distance-based | Convolution-based
Proximity Forest T-Rep
1. DIVISION f DTW-KNN ROCKET
& & & & & 2. PREPROCESSING DL-based Dictionary-based
Inception MrSQM
« Division in day/night
» « Discard days with more than 10% of missing values LITE WEASEL_V2
« Discard nights that contains missing values
« Linear imputation Feature-based Shapelet-based
GlucoStats RSAST
5. EVALUATION METRICS tsfresh RES]
Performance Time Energy Co2 Interval-based
metrics consumption consumption emissions « r-STSF
=

FIGURE 1: Workflow for predicting NH with data-driven models. The next acronyms are used in the figure: Dynamic
Time Warping with K-Near Neighbours (DTW-KNN), Random Scalable and Accurate Subsequence Transform (RSAST), the
Randomized-Supervised Time Series Forest (r-STSF), Random Convolutional Kernel Transform (ROCKET), Random Dilated
Shapelet Transform (RDST), Multiple Representations Sequence Miner (MrSQM).

classification metrics, including AUCROC, specificity,
and recall. We also analyzed the computational cost
(time consumption in minutes) and the environmental
impact (by estimating the energy consumption (kWh)
and CO, emissions) during the training phase through
CodeCarbon tool [50].

The proposed workflow is run five times (each with a
different seed). As a result, the final outcomes are reported as
the mean and STD across the five iterations. This approach
ensures better generalization of the models and provides a
more stable evaluation. The code associated with this method-
ology is available in the following link: https://github.com/
ai4healthurjc/NH_evaluation.git

C. TIME SERIES CLASSIFICATION MODELS
In this subsection, we further detail the TSC models employed
for NH prediction, categorized into seven model types.

1) Feature-based methods

Feature-based methods extract descriptive statistics as fea-
tures from time series to be used in tabular classifiers. These
features can summarize the whole TS or small periods of
the whole time series. These methods are characterized as
series-to-vector transformations. To extract glucose statistics,
we considered the Python libraries: Tsfresh [39] and Glu-
coStats [51]].

Tsfresh is used for extracting statistics from time series
and provides a total of 794 descriptive features [39]. After
feature extraction, a matrix is generated, with rows identify-
ing samples and columns representing the extracted features.
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Some examples of the computed features include the absolute
power of the time series, the maximum value, the sum of
changes, and various correlation measures, among others.
For classification models, the dimensionality of extracted
features is crucial to avoid redundancy, as too many irrelevant
features can impair the model’s ability to generalize beyond
the training set, leading to overfitting [52]. To address this,
tsfresh includes a feature selection algorithm based on statis-
tical hypothesis testing. The test is configured depending on
the type of supervised machine learning problem (classifica-
tion/regression) and the feature type (categorical/continuous).
As a result, the number of extracted features is reduced,
and only those considered important are used as input for
classification. In our case, the classification model employed
is an RF classifier, an ensemble method based on decision
trees that achieves strong performance with tabular data [53].

GlucoStats is a library designed to extract and visualize
meaningful statistical features from CGM data. It is imple-
mented in Python with a focus on modularity, parallelization,
and extensibility. GlucoStats enables the extraction of 59
statistical features, categorized into six main categories: time-
related statistics, statistics related to the number of observa-
tions within different glucose ranges, descriptive statistics,
risk assessment of hypoglycemia and hyperglycemia, and
glucose variability metrics. Additionally, the library allows
for the segmentation of TS data into different windows, en-
abling a more detailed analysis. Instead of computing features
from the complete time series, they can be extracted per
window. In our case, the TS was divided into four windows:
12PM to 6 PM, 6 PM to 9 PM, 9 PM to 11 PM, and 11 PM
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to 12 AM. As a result, the final feature matrix consists of 59
features per window, resulting in a total of 236 features. After
feature extraction, we applied the Relief algorithm [54] to
reduce the number of features and prior training an LR model
for NH prediction.

2) Shapelet-based models

Shapelet-based classification models measure the similarity
between a shapelet and time series by using this similarity
as a discriminatory feature for classification [|55]]. A shapelet
is defined as a time-series subsequence that is in some sense
maximally representative of a class and enables TSC based
on local, phase-independent similarity in shape. The main ad-
vantage of these approaches is that shapelets are interpretable,
preserving model comprehensibility. In this study, we applied
two shapelet-based models: RDST [41]] and RSAST [40].

RDST introduces a novel TS shapelet approach by incor-
porating the concept of dilation. Dilation is applied during
shapelet formulation and influences the features extracted
from the distance vector between a shapelet and a time series.
Regarding the distance function, each value of the shapelet is
compared to a dilated subsequence of the input time series.
This dilation allows shapelets to be non-continuous, enabling
them to match either non-contiguous patterns or contiguous
ones. By focusing on key points of a pattern without covering
it entirely, RDST enhances flexibility in pattern recognition.
Additionally, to reduce computational time, the search for
shapelets is performed randomly.

RSAST is a method proposed to address the weaknesses
of SAST [56] and reduce its computational time. SAST is
a shapelet-based method that improves computational effi-
ciency and reduces complexity by selecting only a few in-
stances per class from the dataset. Although SAST achieves
faster computation compared to STC, its complexity remains
cubic concerning the length of the instances, which can be
problematic for long time series. To enhance the scalability
of SAST, RSAST eliminates the need to explore every pos-
sible set of subseries in a training dataset by employing a
stratified sampling technique combined with statistical tools,
significantly reducing the search space for shapelets. These
statistical tools include analysis of variance (ANOVA) [57]]
and the autocorrelation function [58]. As a result, RSAST
substantially reduces computation time while preserving both
accuracy and interpretability.

3) Interval-based methods

Interval-based methods randomly split time series into multi-
ple intervals or sub-series (commonly of fixed offsets), com-
pute statistics for these intervals, and then combine these
statistics to train an ensemble of predictive models [59]. Most
interval-based approaches include a random selection for
choosing intervals, where the same random interval locations
are used across every time series. These methods are generally
fast and memory-efficient [[59]. In this paper, two interval-
based methods were considered, including QUANT [42] and
r-STSF [43]].

6

QUANT uses quantile-based features to capture the un-
derlying distribution of TS values, integrating this informa-
tion with implicit temporal localization achieved through the
segmentation of intervals. Essentially, the method assumes
that discriminative class information is embedded in the
distributional characteristics of values at different temporal
locations. By adjusting the number of quantiles computed
within each interval, the approach offers a tunable trade-off
between representational detail and computational efficiency,
as quantile extraction is both straightforward and resource-
efficient [42]. In other words, QUANT encodes a prior that
class can be distinguished based on the distribution of values
in different locations of a time series. Quantiles allow for
representing the distribution of values in an interval in more
or less detail (i.e., by computing more or fewer quantiles),
and are simple and efficient to compute [42]. Additionally, the
feature extraction is performed on the first order differences,
second order differences, and a Fourier transform of the input
series along with the original series

r-STSF is a tree-based ensemble model that builds trees
using features derived from statistics over randomly selected
intervals. Instead of relying on the raw TS representation, this
model extracts features from the periodogram and autoregres-
sive representation. Additionally, --STSF employs a stochas-
tic optimization approach and an ensemble of binary trees to
select a set of interval features with high discriminating power
from the high-dimensional interval feature space. The trees in
the ensemble are constructed in a randomized manner follow-
ing the extra-trees algorithm [60], which reduces the variance
of the ensemble and improves classification performance. It
is important to note that the process of extracting candidate
interval features is repeated a predefined number of times.
For an ensemble of 100 trees, the algorithm extracts 10 sets of
candidate discriminatory intervals. Finally, each randomized
tree is built using a number of randomly selected interval
features from the set of candidates, and TSC is performed
based on these features.

4) Convolution-based models
Over the last years, CNNs have demonstrated outstanding
performance in predictive tasks using image and time se-
ries [61]. In these algorithms, convolution and pooling op-
erations are used to extract features from time series, and
then these are passed through an MLP or linear classifiers
for classification tasks. In this study, we implemented two
convolutional-based models: ROCKET [33]] and T-Rep [34].
ROCKET transforms time series using a large number of
convolutional kernels. Kernels with random length, weights,
bias, dilation, and padding are used to create different acti-
vation maps. In particular, the kernel dilation has a critical
impact on the high performance achieved by ROCKET. These
maps are summarized by two pooling operators: (i) Propor-
tion of Positive Values (PPV), which computes the percentage
of positive values; (i) and Global Maximum Pooling (GMP),
which extracts the maximum value from the activation map.
For each time series, 2k features are extracted, where k is
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the number of kernels. Finally, the transformed features are
used to train a linear classifier (ridge regression classifier) to
perform the TSC task.

T-Rep is a self-supervised method for learning fine-grained
representations of both univariate and multivariate time se-
ries [34]). It transforms time series into latent representations
aiming to enhance performance in subsequent tasks such as
forecasting, anomaly detection and classification. We define a
time-embedding as a vector representation of time, obtained
as the output of a learned function that encodes time series
characteristics such as trend, periodicity, and distribution
shifts. These time-embeddings improve the model’s resilience
to missing data and enhance its performance when dealing
with finite-state systems and non-stationary data. The tem-
poral structure of the embeddings is learned through pretext
tasks in self-supervised learning. Consequently, T-Rep inte-
grates time embeddings within the feature-extracting encoder,
enabling the model to capture detailed time-related dynamics.
The main component of the encoder consists of a temporal
CNN-based encoder, which is composed of two layers of one
dimensional dilated convolutions. After the feature extraction
stage, a fully connected two-layer MLP with ReLU activa-
tions is used for TSC.

5) DL-based models

The remarkable results obtained by DL models in different
domains have motivated the development of TSC models
based on ANN-based architectures. These models automat-
ically learn discriminative feature representations from raw
time series data, allowing them to obtain excellent results
in subsequent tasks. In this study, we have evaluated the
performance of two DL-based models for NH prediction:
InceptionTime [35]] and LITE [36].

InceptionTime, developed by [62], obtains the final clas-
sification decision following an ensemble of the predictions
of five Inception networks, with each network contributing
equally to the final output. The architecture of an Inception
network classifier includes two residual blocks, where each
block is composed of three Inception modules instead of
traditional fully convolutional layers. Each residual block’s
input is transferred via a shortcut linear connection to be
added to the next block’s input. After the residual blocks,
for multivariate time series, a Global Average Pooling (GAP)
layer is applied. Finally, a fully connected softmax layer, with
a number of neurons equal to the number of classes in the
dataset, is used for the TSC task.

LITE is a variation of InceptionTime that consists of only
2.34% of the total parameters of the original InceptionTime
model while achieving comparable performance. This ef-
ficiency is inspired by convolutional approaches such as
ROCKET. In this case, a bottleneck operation is performed to
reduce the number of parameters. The bottleneck operation
consists of 1D convolutions with a unit kernel size. Further-
more, several boosting techniques, including multiplexing,
dilation, and custom filters, are applied to enhance perfor-
mance.
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6) Distance-based models

Distance-based methods classify time series through pairwise
similarities between different time series and using a specific
distance metric. The methods considered were PF [31] and
DTW-KNN [32].

PF uses a range of distance metrics to categorize TS ac-
cording to their similarity to ‘exemplar’ time series [31]. PF
algorithm, which builds an ensemble of classification trees
with ‘splits’ using the proximity of a given TS T to a set of
reference time series: if T is closer to the first reference time
series, then it goes to the first branch if it is closer to the sec-
ond reference time series, then it goes to the second branch,
and so on. Proximity Forest integrates 11 TS measures for
evaluating similarity. At each node, a set of reference series is
selected, one per class, together with a similarity measure and
its parameterization. These selections are made stochastically.

DTW is an effective method for estimating the optimal
alignment between TS and sequence elements, enabling the
measurement of a global distance between patterns. Its main
goal is to determine the minimal warping path on an element-
wise cost matrix given a predefined cost function. To achieve
this, the sequences are "warped" non-linearly to assess their
similarity while being invariant to non-linear variations in
the time dimension. KNN classifier combined with DTW has
demonstrated strong effectiveness for TSC [63]], particularly
due to its ability to handle non-linear mappings. Therefore,
we have implemented this approach in our study. Lastly, we
perform KNN with the distance matrix achieved with the
DTW method to perform the TSC task.

7) Dictionary-based models

Dictionary-based methods utilize phase-independent subse-
quences by sliding a window over TS. Instead of measur-
ing the distance to a subsequence, as in shapelet-based ap-
proaches, each window is transformed into a word, and the
frequency of occurrence of repeating patterns is recorded.
Then, a classifier is trained using the occurrence of words
as input to make the TSC. In this study, we have selected
WEASEL_V?2 [37] and MrSQM [38]] as representative exam-
ples of this category of method.

WEASEL_V?2 is an improved version of WEASEL [64].
WEASEL extracts and normalizes subsequences of varying
lengths from a time series. Then, the Fourier transform is
applied to approximate these subsequences, and an ANOVA
F-test is used to select the real and imaginary Fourier coef-
ficients that best separate TS from different classes. These
selected Fourier values are then discretized into words using
a symbolic feature aggregation method. Next, a large sparse
dictionary is built from the words across all chosen window
lengths. To reduce the size of the dictionary and remove
irrelevant words, a Chi-squared test is applied. Finally, us-
ing the occurrence of the remaining words (TF-IDF [|63]), a
RIDGE regression classifier is trained to perform the TSC.
WEASEL_V?2 introduces two major improvements: (1) it
incorporates a fixed dilation, similar to convolutional mod-
els, by applying a dilation mapping in the window creation
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process; and (2) it creates a dense dictionary limited to 256
words. To increase diversity and reduce bias in the dense dic-
tionary, WEASEL_V2 employs an ensemble approach over
multiple parameter configurations, using randomization. As
a result, this model achieves better performance compared to
the original WEASEL.

MrSQM [38]] is a dictionary-based method that relies on
multiple symbolic representations. It consists of three main
steps: (1) symbolic transformation; (2) feature selection; and
(3) classification model. In the first step, the TS is trans-
formed into words using Symbolic Aggregate approXima-
tion [66] or symbolic feature aggregation. After reducing
the number of words, a novel supervised symbolic feature
selection approach is applied in the all-subsequence space
by adapting a Chi-square bound developed for discriminative
pattern mining. Finally, with the selected features, a LR model
is trained to perform the TSC task. LR is chosen due to
its accuracy, scalability, model transparency, and ability to
provide well-calibrated prediction probabilities.

D. ENVIRONMENTAL IMPACT AND CARBON FOOTPRINT
WITH CODECARBON

Recently, several energy estimation tools such as Code-
Carbon, CarbonTracker and PowerTop have been proposed
for measuring the environmental impact of ML/DL mod-
els [27]. These tools primarily rely on Intel Running Average
Power Limit and NVIDIA Management Library to measure
the energy consumption of applications, which are consid-
ered reliable for measuring CPU and GPU power consump-
tion. According to several experiments of energy estimation
tools [67], CodeCarbon showed the most precise accuracy
compared to physical wattmeters. In this study, we measured
the environmental impact using version 2.8.3 [50]]. Code-
Carbon is an open-source Python package designed to track
power consumption by monitoring the total system power
usage during computational tasks. It uses hardware-level met-
rics (if available) or software-level estimations to fetch the
energy drawn by the CPU, GPU, and RAM. By aggregating
the energy consumption of these components, CodeCarbon
calculates the corresponding carbon footprint based on the
machine’s geographic location, using region-specific carbon
intensity data for electricity generation. These carbon in-
tensity values are sourced from the global energy mix file
in the CodeCarbon repository, which contains per-country
data from Our World In Data. If this data is unavailable, it
defaults to a static value of 475 gCO2eq/KWh. The goal of
CodeCarbon is to measure and track the carbon footprint of
ML model training and inference, supporting efforts to make
ML processes more environmentally sustainable by providing
insights into energy consumption and emissions.

V. RESULTS

In this section, we present the results of different TSC meth-
ods for NH prediction in T1D patients. We first present the ex-
perimental setup, then an extended comparison of the predic-
tive performance of ML-based models for NH prediction, and
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TABLE 2: Hyperparameter values explored for each one of
the 14 evaluated approaches.

Approach Hyperparameter Values/options
number_trees {50,100, 150}

PF number_splitters {3,5,8}
max_depth {2,4,6}
min_samples_plit {2,4,6}

DTW-KNN  number of neighbors [20, 150]
epochs {5, 10, 20, 50}

T-Rep C {le=6 172 1e74,172

171,1,5,10,20}
solver liblinear, saga
number_kernels {5000, 10000, 20000}

ROCKET max_dilations_per_kernel {16, 32,64}
n_features_per_kernel {2,4,6}
depth {4,6,8}
number_filters {16, 32,64}

Inception kernel_size {20, 40, 60}
n_conv_per_layer {3,5,8}
number_epochs {50, 75,100}
number_classifiers {3,5,8}
number_filters {16,32,64}

LITE kernel_size {20, 40,60}
number_epochs {50, 75,100}
strat RS, SR

MrSQM features_per_rep {300, 500, 700}
selection_per_rep {1000, 1500, 2000}
min_window {4,8,10}

WEASEL_V2 max_feature_count {10000, 20000, 30000}
C {1e78,1e7 2,174,172

1~1,1,5,10,20}

GlucoStats solver liblinear, saga
windowing_param [[0,1,0,0],[0,2,0,0],

[0’ 37 07 0]7 [07 6) 07 0]]
default_fc_parameters minimal, efficient, comprehensive
tsfresh relevant_feat_extractor False, True
n_random_points {5, 10,20}

RSAST nb_inst_per_class {5, 10,20}
max_shapelets {500, 1000, 3000, 5000}

RDST distance DTW, Euclidean,

Manhattan, Minkowski
number_intervals {30,50,75}

r-STSF min_interval_length {3,5,7}
number_estimators {100, 200, 300}
interval_depth {4,6,8}

QUANT quantile_divisor {4, 6,8}

finally, an analysis of time consumption, energy consumption
and CO2 emissions is presented.

A. EXPERIMENTAL SETUP

For the implementation of the models, Python 3.10 was em-
ployed. For DTW-KNN, we used dtwParallel [|68]], whereas
for T-Rep and GlucoStats, we used the GitHub repositories
in |github.com/imprs/TS-Rep and |github.com/ai4healthurjc/
glucostats. For the remaining algorithms, we relied on the
aeon library (version 1.0.0) [59]. The hyperparameter values
selected for the models considered in this study are detailed
in Table [2] To determine the optimal hyperparameter values
for each classification method, we employed GridSearchCV
with a three-fold cross-validation over the training subset.
Model training and hyperparameter tuning were performed
using all available CPUs from two AMD EPYC 7713P 64-
COre processors.
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TABLE 3: Performance comparison of different times series classification models used for predicting NH. The best-performing

values for each metric are highlighted in bold.

Type Model Accuracy Specificity Recall AUCROC
Distance-based PF 0.7194+0.041 | 0.736£0.059 | 0.661+0.060 | 0.69940.020
DTW-KNN 0.70240.029 | 0.719+0.043 | 0.63740.048 | 0.678+0.014
Convolution-based T-Rep 0.64840.049 | 0.63640.069 | 0.7031+0.077 | 0.67010.024
ROCKET 0.69440041 0.70940.060 | 0.6394+0.056 | 0.674+0.012
DL-based Inception 0.6704+0.011 | 0.68140.024 | 0.6284+0.049 | 0.655+0.016
LITE 0.7324+0.032 | 0.761+£0.061 | 0.62340.086 | 0.69240.017
Dictionary-based MrSQM 0.593+0.017 | 0.596+0.027 | 0.57740.044 | 0.58740.017
WEASEL_V2 | 0.72740.025 | 0.76340.030 | 0.58040.041 | 0.67040.024
Feature-based GlucoStats 0.74040.026 | 0.76340.042 | 0.64310.068 | 0.703+0.021
tsfresh 0.71240.029 | 0.72340.044 | 0.6714+0.048 | 0.697+0.013
Shapelet-based RSAST 0.581+0.018 | 0.583+0.035 | 0.567+0.045 | 0.57640.008
RDST 0.6101+0.045 | 0.582+0.068 | 0.720+0.056 | 0.6564-0.025
Interval-based r-STSF 0.741+0.026 | 0.767+0.041 | 0.640+0.056 | 0.7031+0.018
QUANT 0.72340.026 | 0.74740.043 | 0.6534+0.060 | 0.6974+0.012
14 13 12 11 10 9 8 6 5 4 3 2 1
l 1 l 1 l 1 l 1 l 1 l 1 1 l 1 l 1 l 1 l 1 l 1 l
RSAST 136940 26000 G| YCOSTATS
MRSQM 124000 28000 RSTSF
RDST -10:6000 3.6000  pE
INCEPTION -12:6000 3.8000 TSFRESH
TREP 9.8000 4.4000 QUANT
ROCKET 8.4000 5.6000 LlTE
WEASEL 8.0000 8.0000 DTW

FIGURE 2: Critical difference plot on test accuracy for different time series classification models used for nocturnal hypo-

glycemia prediction. Best models are placed to the right.

B. CLASSIFICATION RESULTS

Table[3|showed that interval-based models achieved the high-
est overall performance across multiple evaluation metrics.
In particular, r-STSF exhibited the highest value of accu-
racy (0.741£0.026), AUCROC (0.703+0.018) and speci-
ficity (0.7674£0.041). Among feature-based models (ex-
tracted using GlucoStats) demonstrated reasonable perfor-
mance, achieving an accuracy of 0.7404-0.026 and an AU-
CROC of 0.703+0.021, which are comparable to r-STSF.
This indicated that handcrafted feature extraction techniques
can be highly effective in TSC, and more particularly, for NH
prediction.

Dictionary-based and shapelet-based methods showed
mixed results. WEASEL_V2 achieved 0.72740.025 in ac-
curacy, but its recall was 0.580£0.041 (lower than other
methods). Shapelet-based approaches (RSAST and RDST)
obtained the worst accuracy and recall values. Convolution-
based and DL-based methods (ROCKET, T-Rep, Inception,
and LITE) performed moderately well, with LITE achieving
an accuracy of 0.7324+0.032. However, the AUCROC val-
ues were generally lower than the best-performing interval-
and feature-based models, suggesting that they may struggle
with distinguishing between classes in this specific dataset.
The results indicated that interval-based and feature-based
approaches are the most effective for NH prediction, with
r-STSF and glucose statistics (extracted using GlucoStats)
achieving the best balance across accuracy, specificity, recall,
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and AUCROC.

Figure Q] shows a critical difference (CD) diagram, which
ranks the performance of various time-series classification
models based on their performance over the 5 iterations of
experiments. The values for the CD diagram are computed
by ranking the models based on their AUCROC scores for
each iteration and then computing the mean position over
the five iterations. Consequently, a lower value indicates
better performance, as it means the model consistently ranked
among the top performers throughout the five iterations. The
models at the right of the diagram exhibit superior rankings,
whereas those on the left show relatively lower performance.
The results indicate that GlucoStats and r-STSF achieve the
highest rankings, both with an average rank of around 2.6,
confirming their effectiveness as top-performing approaches.
Notably, both models ranked among the top three perform-
ers in each of the five iterations. Other high-ranking mod-
els include PF, tsfresh, and QUANT, reinforcing the strong
performance of feature-based and interval-based methods.
Conversely, methods such as RSAST, MrSQM, and RDST
are positioned towards the left, with RSAST exhibiting the
lowest ranking (13.6). This suggests that shapelet-based and
certain dictionary-based approaches underperform compared
to other methodologies. Notably, DL-based models (e.g., In-
ception and LITE) achieve mid-range rankings, indicating
competitive but not superior performance. The distance-based
DTW method ranks relatively low, further supporting the

9



IEEE Access

observation that alternative approaches capture more discrim-
inative time-series representations. Overall, the CD diagram
highlights that feature-based and interval-based methods con-
sistently outperform other approaches, aligning with the re-
sults observed in the tabular performance metrics.

C. TIME CONSUMPTION, ENERGY CONSUMPTION AND
CO, EMISSIONS OF TSC MODELS

Figure 3] presents a comparative analysis of the compu-
tational time consumption, energy consumption and COq
emissions for different TSC models used for NH prediction
and categorized into 7 different types of approaches. The
x-axis represents different classification approaches catego-
rized into methodological families, including distance-based,
convolutional-based, DL-based, dictionary-based, feature-
based, shapelet-based, and interval-based methods.

In Figure |3|(a), the y-axis displays the computational time
in minutes on a logarithmic scale, allowing for a clearer
distinction between models with significantly different exe-
cution times. The results reveal that the PF approach, RDST,
and both DL-based approaches (Inception and LITE) exhibit
the highest computational times, significantly surpassing all
other methods. This aligns with their known inefficiency
in large-scale TSC tasks, requiring more than 100 minutes
of training. The remaining approaches demonstrate a con-
siderably lower computational time. DTW-KNN, ROCKET,
tsfresh, and WEASEL_V2 show moderate time consumption,
slightly exceeding three minutes. Finally, T-Rep, MrSQM,
GlucoStats, RSAST, r-STSF, and QUANT complete their
computations in less than 90 seconds. Notably, the QUANT
approach achieves the lowest computational time, making it
the most efficient method in this comparison. Overall, these
results highlight the trade-offs between computational effi-
ciency and model complexity in TSC for NH prediction.

The pattern observed in energy consumption was similarly
followed in the environmental impact, which is measured by
energy consumption (kW/h) (see FigureE](b)) and CO- emis-
sions (see Figure 3] (c)). Note that the y-axis in both figures
is presented on a logarithmic scale to facilitate comparison
across approaches with widely varying resource demands.
As shown, the distance-based method named PF and DL-
based approaches Inception and LITE exhibited high energy
consumption and CO, emissions, highlighting the computa-
tional cost associated with these architectures. The shapelet-
based model RDST ranked among the most energy-intensive
and contaminating, aligning with the computational complex-
ity inherent in shapelet extraction. Feature-based methods
performed with CGM-derived features extracted using Glu-
coStats and tsfresh, convolution-based methods (T-Rep and
ROCKET), and dictionary-based approaches (MrSQM and
WEASEL_V2) consumed an intermediate amount of energy
and presented moderate amount of CO2 emissions.

Interval-based approaches (QUANT and r-STSF) exhib-
ited the lowest energy consumption and CO> emissions, and
QUANT presented the least energy among all TSC methods.
The pattern observed in energy consumption was similarly
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FIGURE 3: Comparison of: (a) time consumption, (b) energy
consumption and (c) CO5 emissions for different TSC models
used for nocturnal hypoglycemia prediction.

reflected in carbon emissions (see Figure 3| (c)), reinforcing
the direct relationship between energy usage and environ-
mental impact. Overall, these results show that interval-based
methods have the least environmental impact, followed by
convolutional models, dictionary-based models, and feature-
based models. In addition, the results underscore the sig-
nificant variation in resource consumption across machine
learning methodologies.
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emissions. The best-performing models are positioned in the
top left corner.
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Figure [] presents a comparison of model performance
based on AUCROC against computational time consumption,
energy consumption, and CO- emissions for different TSC
models. The best models are located in the top left corner,
as they achieve the highest performance while maintaining
low computational cost and environmental impact. The mod-
els in this optimal region include interval-based methods
(QUANT and r-STSF) and feature-based models (GlucoStats
and tsfresh). These models consistently remain in the same
favorable zone for time consumption (Figure [] (a)), energy
consumption (FigureE](b)), and CO- emissions (FigureE](c)).
As a result, we can conclude that these approaches balance
computational efficiency and high predictive performance.
Note that the models located in the bottom left region (in-
dicating poor accuracy but high efficiency) include RSAST
and MrSQM, while those in the top right region (high ac-
curacy but low efficiency) include LITE, PF, Inception, and
RDST. Therefore, despite offering state-of-the-art perfor-
mance, these latter models raise environmental concerns due
to their high energy consumption and carbon footprint. The
rest of the approaches present a moderate performance and
environmental impact, offering more energy-efficient alter-
natives.

V1. DISCUSSION

In this paper, a comprehensive evaluation of 14 different
approaches (classified into seven categories) is performed
for predicting NH in individuals with T1D. NH is a serious
health problem in individuals with T1D and early prevention
is crucial to avoid complications. However, most existing
studies that aim to predict NH using AI models have primarily
relied on feature-based approaches. As a consequence, further
research is needed to explore and identify the most effec-
tive predictive approaches. Therefore, we presented a com-
prehensive evaluation of 14 different TSC methods, which
were categorized into seven categories, for predicting NH in
individuals with T1D. To provide a comprehensive and global
evaluation of each one of the approaches, we measured three
key parameters: predictive performance, time consumption
and environmental impact (energy consumption and COq
emissions). This extensive evaluation not only provides in-
sights into model performance but also highlights the poten-
tial real-world impact of implementing these models on a
larger scale.

Regarding the performance metric, we used the AUCROC
to determine the approaches with the highest performance.
The best approaches were r-STSF (interval-based) and mod-
els that used glucose features extracted using GlucoStats
(feature-based), achieving an AUCROC of 0.703 +0.018 and
0.703 £ 0.021, respectively. This showed that interval-based
approaches effectively capture relevant temporal patterns for
the given classification task. Both approaches were closely
followed by PF (distance-based) with 0.699+0.020, QUANT
(interval-based) with 0.697 4 0.012, tsfresh (Feature-based)
with 0.697+0.013, and LITE (DL-based) with 0.692+0.017.
These six models achieved an AUCROC above 69%, making
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them the most effective in predicting a possible NH event.
Overall, the performance metrics indicate that Interval-based
and Feature-based approaches are the most effective for this
classification task, along with the PF and LITE approaches.

As shown in previous sections, there might be situations
where we need extra evaluation metrics in addition to pre-
dictive metrics (such as accuracy, specificity and others), to
be able to decide the type of ML or DL model. The time
consumption in training is associated with the algorithms’
computational complexity. While accuracy reflects an algo-
rithm’s ability to correctly classify data, computational com-
plexity offers a different dimension of evaluation, which is
key for assessing the feasibility of implementing and de-
ploying trained models at a large scale. For instance, in our
experiments, although distance-based methods (PF) and DL-
based approaches (RDST) reached high accuracy values, they
had a considerable computational cost. The training time of
these models is by far superior (more than 100 minutes) com-
pared with the other approaches. On the other hand, T-Rep,
MrSQM, GlucoStats, RSAST, r-STSF, and QUANT complete
their training in less than 90 seconds, highlighting a reduced
computational time.

Lastly, training ML and DL models have a significant
global environmental impact. This impact needs to be mea-
sured for a proper and comprehensive evaluation of an Al
model. Therefore, we evaluated the energy consumption and
carbon emissions of each of the 14 approaches. The results
indicate that interval-based methods have the least environ-
mental impact, followed by convolutional models, dictionary-
based models, and feature-based models. The QUANT model
achieves the lowest environmental impact, consuming only
a mean of 0.27 x 1073 kg and 0.15 x 10~2 kW/h. Note
that distance-based and DL-based models present the highest
environmental impact.

To sum up, we evaluated the efficiency of the approaches
by comparing their performance metrics, time consumption,
and environmental impact to determine the best possible op-
tions. As a result, the interval-based models (QUANT and
r-STSF) and feature-based models (GlucoStats and tsfresh)
are the most efficient, as they achieved the best balance
between AUCROC and environmental impact. Conversely,
DL-based, distance-based, and shapelet-based approaches,
despite achieving a good AUCROC, are not feasible for large-
scale implementation due to their high complexity and envi-
ronmental impact. These findings emphasize the importance
of selecting an appropriate model based on both predic-
tive performance and computational feasibility. They provide
valuable insights into the trade-offs between classification
accuracy and energy efficiency in time-series classification.
Lastly, the strong correlation between energy usage and CO»
emissions highlights the importance of considering computa-
tional sustainability when selecting ML models, particularly
for large-scale applications.

In the present study, we employed TSC models and
achieved a maximum accuracy and AUCROC of 0.741 and
0.703, respectively. While this result is competitive, it is lower
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than the predictive results presented in several prior studies
(see Section [M). This difference is mainly due to variations
in the number of samples of dataset considered and PHs. For
instance, Vu et al. and Mosquera-Lopez et al. employed large
datasets, with one million and 44,000 samples, respectively.
The data size can be related to the generalizability and per-
formance of their models. Furthermore, the definition and
temporal framing of NH prediction differs across studies. For
instance, Berikov et al. and Kozinetz et al. adopted short-term
prediction horizons of 15 to 30 minutes, making predictions
for short-term PHs, which can not compared with studies with
PHs of several hours. For example, our study establishes the
NH prediction over a broader temporal window of 6 hours.
Additionally, variations in data modality and the inclusion of
other variables such as insulin administration and meal intake
can contribute to differences in model performance compared
to TSC models. Note that this work is a comparative analysis
of TSC models for NH prediction, which aims not only to
assess the predictive performance of models but also to de-
termine those models are more feasible for this clinical task,
providing a foundation for the trade-off between performance
and environmental impact.

It is worth noting that the models developed in this study
that reached the highest predictive results will be integrated
into a real-world mobile-based application as part of the
WARIFA project [69]]. The WARIFA application is accessible
through smartphones and collects data from various sources,
including user-generated and public data for assessing NCD
risks and providing personalized lifestyle recommendations.
Regarding glucose and NH, users in the mobile-based ap-
plication will provide CGM data and the data-driven models
built into this work will be used for predicting NH, preventing
acute clinical events and improving patient’s quality of life.

Limitations. Despite the promising results, several lim-
itations should be considered. In this study, the predictive
models were trained using a medium-sized dataset, consisting
of only a few thousand samples, which can limit the predictive
performance. Additionally, datasets were imbalanced, with
fewer samples associated with NH events. We considered
an under-sampling approach to balance the training subset.
This class imbalance may affect the robustness of the models,
particularly when applied to more diverse populations or
real-world clinical scenarios. Future research can consider
other resampling approaches such as oversampling and hy-
brid methods, including generative adversarial networks to
create synthetic data of minority classes. Additionally, we
will aim to incorporate additional datasets covering a broader
range of demographic cohorts and clinical settings.

VIl. CONCLUSIONS

In this paper, a comprehensive evaluation of 14 different
approaches (classified into seven categories) is performed
for predicting NH in individuals with T1D. This evalua-
tion was carried out by assessing the performance in two
categories: predictive and environmental impact (measured
by energy consumption and CO5 emissions) over a dataset
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of 52 T1D people belonging to the Complejo Hospitalario
Insular-Materno Infantil de Las Palmas de Gran Canaria.
The experimental results indicate that the most efficient ap-
proaches, in terms of balancing AUCROC and environmen-
tal impact, are the interval-based and feature-based models.
Specifically, the models that achieved the best AUCROC with
reduced training time and environmental impact are r-STSF
and GlucoStats, achieving an AUCROC of 0.70340.018 and
0.703+0.021, respectively. Conversely, DL-based, distance-
based, and shapelet-based approaches, despite achieving
good AUCROC, are not feasible for large-scale implementa-
tion due to their high complexity and environmental impact.
This research explores the need to determine the best ap-
proach for predicting NH events and preventing related health
complications. Additionally, it emphasizes the importance of
selecting an appropriate model based on predictive perfor-
mance, computational complexity, and environmental impact,
which are relevant factors for large-scale implementation of
ML and DL models.
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